33 complex_t h_plus(complex_t z)
35 return 0.5 * cerfcx(-
mul_I(z) / std::sqrt(2.0));
37 complex_t h_min(complex_t z)
39 return 0.5 * cerfcx(
mul_I(z) / std::sqrt(2.0));
43 RoughMultiLayerComputation::RoughMultiLayerComputation(
const ProcessedSample* p_sample)
50 if (elem.getAlphaMean() < 0.0)
52 auto n_slices = mp_sample->numberOfSlices();
54 double wavelength = elem.getWavelength();
56 complex_t crosscorr(0.0, 0.0);
58 std::vector<complex_t> rterm(n_slices - 1);
59 std::vector<complex_t> sterm(n_slices - 1);
61 for (
size_t i = 0; i + 1 < n_slices; i++) {
62 rterm[i] = get_refractive_term(i, wavelength);
63 sterm[i] = get_sum8terms(i, elem);
65 for (
size_t i = 0; i + 1 < n_slices; i++) {
68 autocorr += std::norm(rterm[i]) * std::norm(sterm[i]) * rough->
getSpectralFun(q);
71 if (mp_sample->crossCorrelationLength() != 0.0) {
72 for (
size_t j = 0; j < n_slices - 1; j++) {
73 for (
size_t k = 0; k < n_slices - 1; k++) {
77 * std::conj(rterm[k]) * std::conj(sterm[k]);
82 elem.addIntensity((autocorr + crosscorr.real()) * M_PI / 4. / wavelength / wavelength);
85 complex_t RoughMultiLayerComputation::get_refractive_term(
size_t ilayer,
double wavelength)
const
87 auto& slices = mp_sample->slices();
88 return slices[ilayer].material().refractiveIndex2(wavelength)
89 - slices[ilayer + 1].material().refractiveIndex2(wavelength);
92 complex_t RoughMultiLayerComputation::get_sum8terms(
size_t ilayer,
95 auto& slices = mp_sample->slices();
96 auto p_fresnel_map = mp_sample->fresnelMap();
98 const auto P_out_plus = p_fresnel_map->getOutCoefficients(sim_element, ilayer);
100 const auto P_in_minus = p_fresnel_map->getInCoefficients(sim_element, ilayer + 1);
101 const auto P_out_minus = p_fresnel_map->getOutCoefficients(sim_element, ilayer + 1);
103 complex_t kiz_plus = P_in_plus->getScalarKz();
104 complex_t kfz_plus = P_out_plus->getScalarKz();
105 complex_t qz1_plus = -kiz_plus - kfz_plus;
106 complex_t qz2_plus = -kiz_plus + kfz_plus;
107 complex_t qz3_plus = -qz2_plus;
108 complex_t qz4_plus = -qz1_plus;
109 double thickness = slices[ilayer].thickness();
110 complex_t T_in_plus = P_in_plus->getScalarT() *
exp_I(kiz_plus * thickness);
111 complex_t R_in_plus = P_in_plus->getScalarR() *
exp_I(-kiz_plus * thickness);
112 complex_t T_out_plus = P_out_plus->getScalarT() *
exp_I(kfz_plus * thickness);
113 complex_t R_out_plus = P_out_plus->getScalarR() *
exp_I(-kfz_plus * thickness);
115 complex_t kiz_minus = P_in_minus->getScalarKz();
116 complex_t kfz_minus = P_out_minus->getScalarKz();
117 complex_t qz1_minus = -kiz_minus - kfz_minus;
118 complex_t qz2_minus = -kiz_minus + kfz_minus;
119 complex_t qz3_minus = -qz2_minus;
120 complex_t qz4_minus = -qz1_minus;
123 if (
const LayerRoughness* roughness = mp_sample->bottomRoughness(ilayer))
124 sigma = roughness->getSigma();
125 complex_t term1 = T_in_plus * T_out_plus * h_plus(qz1_plus * sigma);
126 complex_t term2 = T_in_plus * R_out_plus * h_plus(qz2_plus * sigma);
127 complex_t term3 = R_in_plus * T_out_plus * h_plus(qz3_plus * sigma);
128 complex_t term4 = R_in_plus * R_out_plus * h_plus(qz4_plus * sigma);
130 P_in_minus->getScalarT() * P_out_minus->getScalarT() * h_min(qz1_minus * sigma);
132 P_in_minus->getScalarT() * P_out_minus->getScalarR() * h_min(qz2_minus * sigma);
134 P_in_minus->getScalarR() * P_out_minus->getScalarT() * h_min(qz3_minus * sigma);
136 P_in_minus->getScalarR() * P_out_minus->getScalarR() * h_min(qz4_minus * sigma);
138 return term1 + term2 + term3 + term4 + term5 + term6 + term7 + term8;
complex_t mul_I(complex_t z)
Returns product I*z, where I is the imaginary unit.
complex_t exp_I(complex_t z)
Returns exp(I*z), where I is the imaginary unit.
Defines class IFresnelMap.
Defines and implements class ILayerRTCoefficients.
Defines class LayerInterface.
Defines class LayerRoughness.
Defines M_PI and some more mathematical constants.
Defines class MultiLayer.
Defines class ProcessedSample.
Defines class RoughMultiLayerComputation.
Defines class SimulationElement.
std::unique_ptr< const ILayerRTCoefficients > getInCoefficients(const T &sim_element, size_t layer_index) const
Retrieves the amplitude coefficients for an incoming wavevector.
A roughness of interface between two layers.
double getSpectralFun(const kvector_t kvec) const
Returns power spectral density of the surface roughness.
Data structure that contains all the necessary data for scattering calculations.
double crossCorrSpectralFun(const kvector_t kvec, size_t j, size_t k) const
Fourier transform of the correlation function of roughnesses between the interfaces.
Data stucture containing both input and output of a single detector cell.