BornAgain  1.19.79
Open-source research software to simulate and fit neutron and x-ray reflectometry and grazing-incidence small-angle scattering
Profiles

Description

Profiles for distributions and correlation functions.

Classes

class  Profile1DCauchy
 Exponential IProfile1D exp(-|omega*x|); its Fourier transform standardizedFT(q) is a Cauchy-Lorentzian starting at standardizedFT(0)=1. More...
 
class  Profile1DCosine
 IProfile1D consisting of one cosine wave [1+cos(pi*x/omega) if |x|<omega, and 0 otherwise]; its Fourier transform standardizedFT(q) starts at standardizedFT(0)=1. More...
 
class  Profile1DGate
 Square gate IProfile1D; its Fourier transform standardizedFT(q) is a sinc function starting at standardizedFT(0)=1. More...
 
class  Profile1DGauss
 Gaussian IProfile1D; its Fourier transform standardizedFT(q) is a Gaussian starting at standardizedFT(0)=1. More...
 
class  Profile1DTriangle
 Triangle IProfile1D [1-|x|/omega if |x|<omega, and 0 otherwise]; its Fourier transform standardizedFT(q) is a squared sinc function starting at standardizedFT(0)=1. More...
 
class  Profile1DVoigt
 IProfile1D that provides a Fourier transform standardizedFT(q) in form of a pseudo-Voigt decay function eta*Gauss + (1-eta)*Cauchy, with both components starting at 1 for q=0. More...
 
class  Profile2DCauchy
 Two-dimensional Cauchy distribution in Fourier space; corresponds to a normalized exp(-r) in real space, with $r=\sqrt{(\frac{x}{\omega_x})^2 + (\frac{y}{\omega_y})^2}$. More...
 
class  Profile2DCone
 Two-dimensional cone distribution in Fourier space; corresponds to 1-r if r<1 (and 0 otherwise) in real space with $r=\sqrt{(\frac{x}{\omega_x})^2 + (\frac{y}{\omega_y})^2}$. More...
 
class  Profile2DGate
 Two-dimensional gate distribution in Fourier space; corresponds to normalized constant if r<1 (and 0 otherwise) in real space, with $r=\sqrt{(\frac{x}{\omega_x})^2 + (\frac{y}{\omega_y})^2}$. More...
 
class  Profile2DGauss
 Two-dimensional Gauss distribution in Fourier space; corresponds to normalized exp(-r^2/2) in real space with $r=\sqrt{(\frac{x}{\omega_x})^2 + (\frac{y}{\omega_y})^2}$. More...
 
class  Profile2DVoigt
 Two-dimensional Voigt distribution in Fourier space; corresponds to eta*Gauss + (1-eta)*Cauchy. More...