BornAgain
1.19.0
Simulate and fit neutron and xray scattering at grazing incidence

Classes  
class  FTDistribution1DCauchy 
Exponential IFTDistribution1D exp(omega*x); its Fourier transform evaluate(q) is a CauchyLorentzian starting at evaluate(0)=1. More...  
class  FTDistribution1DCosine 
IFTDistribution1D consisting of one cosine wave [1+cos(pi*x/omega) if x<omega, and 0 otherwise]; its Fourier transform evaluate(q) starts at evaluate(0)=1. More...  
class  FTDistribution1DGate 
Square gate IFTDistribution1D; its Fourier transform evaluate(q) is a sinc function starting at evaluate(0)=1. More...  
class  FTDistribution1DGauss 
Gaussian IFTDistribution1D; its Fourier transform evaluate(q) is a Gaussian starting at evaluate(0)=1. More...  
class  FTDistribution1DTriangle 
Triangle IFTDistribution1D [1x/omega if x<omega, and 0 otherwise]; its Fourier transform evaluate(q) is a squared sinc function starting at evaluate(0)=1. More...  
class  FTDistribution1DVoigt 
IFTDistribution1D that provides a Fourier transform evaluate(q) in form of a pseudoVoigt decay function eta*Gauss + (1eta)*Cauchy, with both components starting at 1 for q=0. More...  
class  FTDistribution2DCauchy 
Twodimensional Cauchy distribution in Fourier space; corresponds to a normalized exp(r) in real space, with . More...  
class  FTDistribution2DCone 
Twodimensional cone distribution in Fourier space; corresponds to 1r if r<1 (and 0 otherwise) in real space with . More...  
class  FTDistribution2DGate 
Twodimensional gate distribution in Fourier space; corresponds to normalized constant if r<1 (and 0 otherwise) in real space, with . More...  
class  FTDistribution2DGauss 
Twodimensional Gauss distribution in Fourier space; corresponds to normalized exp(r^2/2) in real space with . More...  
class  FTDistribution2DVoigt 
Twodimensional Voigt distribution in Fourier space; corresponds to eta*Gauss + (1eta)*Cauchy. More...  