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Preface

About BornAgain
BornAgain is a software package to simulate and fit reflectometry, off-specular scat-
tering, and grazing-incidence small-angle scattering (GISAS) of X-rays and neutrons.
It provides a generic framework for modeling multilayer samples with smooth or rough
interfaces and with various types of embedded nanoparticles. The name, BornAgain,
alludes to the central role of the distorted-wave Born approximation (DWBA) in the
physical description of the scattering process.

BornAgain is maintained by the Scientific Computing Group of the Jülich Cen-
tre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Garching,
Germany. It free and open source software. The source code is released under the
GNU General Public License (GPL, version 3 or higher), the documentation under the
Creative Commons license CC-BY-SA.

Citation
The canonical reference for BornAgain is the journal article

Gennady Pospelov, Walter Van Herck, Jan Burle, Juan M. Carmona Loaiza,
Céline Durniak, Jonathan M. Fisher, Marina Ganeva, Dmitry Yurov and
Joachim Wuttke:
BornAgain: software for simulating and fitting grazing-incidence small-
angle scattering
J. Appl. Cryst. 53, 262–276 (2020)

Use of the software should additionally be documented by citing a specific version
thereof

BornAgain — Software for simulating and fitting X-ray and neutron small-
angle scattering at grazing incidence, version ⟨version⟩ (⟨release date⟩),
http://www.bornagainproject.org

Citation of the present document is only necessary when referring to specific informa-
tion about form factors.
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1 Introduction

BornAgain comes with a comprehensive collection of hard-coded shape transforms for
standard particle geometries like spheres, cylinders, prisms, pyramids or ripples. This
collection is documented in the following. For each shape, the real-space geometry is
shown in orthogonal projections, the parameters of the BornAgain method are defined,
an analytical expression for the form factor is given, and exemplary results for |F (q)|2

versus αf, ϕf are shown for small-angle scattering conditions (αi = ϕi = 0).
The computation of F (q) is based on shapes S(r) given in Cartesian coordinates,

as defined in the orthogonal projections. Typically, the vertical (z) direction is chosen
along a symmetry axis of the particle. The origin is always at the center of the bottom
side of the particle. Different parametrization or a different choice of the origin cause
our analytic form factors to trivially deviate from expressions given in the IsGISAXS
manual [1, Sec. 2.3] or in the literature [2, Appendix].

We made sure that all expressions also hold for complex scattering vectors q,
used to describe in order to take any material absorption into account. In standard
reflectometry geometry, with reference surface normal to ẑ, only the vertical compo-
nents of ki and kf can have imaginary parts. However, for tilted particles F (q̃) needs
to be computed with a rotated scattering vector q̃ that may be complex in all three
components. Therefore BornAgain allows all three components of q to be complex.

In the following, information about the implemented geometries is given in stan-
dardized form. Analytical expressions are given for the form factor F (q), for the
volume V = F (0), and for the maximum horizontal section S (the area of the particle
as seen from above). Mathematical notation in the form factor expressions includes
the cardinal sine functions sinc(z) := sin(z)/z and the Bessel function of first kind and
first order J1(z) [3, Ch. 9]. If results contain an integral, then no analytical form was
found, and the integral is evaluated by numeric quadrature. For polyhedral figures,
except a few simple ones like the rectangular box, we use a generic form factor com-
putation, parametrized by the vertices of the figure, that is described in full detail in
a mathematical paper [4].

Almost all analytical expressions for F (q) contain removable singularities for cer-
tain values of q. Our implementation uses proper analytic continuations at these
singularities, though this is not explicitly denoted in the following formula collection.
Furthermore, series expansions are used to ensure numeric accuracies in the neighbor-
hood of the singularities. For polyhedra, see Ref. [4] for a meticulous discussion.

Geometrical objects can be parametrized in different ways. Concerns about user
experience and about code readability sometimes lead to different choices. For the
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Figure 1.1: Normalized intensity I(αf, ϕf) for small-angle scattering by a truncated sphere with
R = 4.2 nm and H = 6.1 nm, for four different tilt angles ϑ (rotation around the y axis). Since
I possess the standard symmetry (1.2), data are only shown for first quadrant 0◦ ≤ ϕf, αf ≤ 5◦.

BornAgain user interfaces (GUI and API) we have chosen the most standard param-
eters, as used in elementary geometry, like length, height, radius, even if this is at
variance from the IsGISAXS precedent. Where our parametrization made analytic
expressions too tedious, we use alternate internal parameters to alleviate the formulæ.

Examplary form factors are numerically computed in Born approximation. All
simulations scripts can be found in the BornAgain sources in directory Doc/FFCat-
alog/fig/ff2. The particles are assigned a refractive index of n = 10−5. Parameters
are chosen such that the particle volume V is about 250 nm3 (within ±5 %); except
ripples, which are chosen with a vertical section V/L of 40 nm2 and a length of 25 nm.
The incident wavelength is 1 Å. The incident beam is always in x direction, hence
αi = ϕi = 0. Simulated detector images are normalized to the maximum scattering
intensity at F (0) = V ,

I(αf, ϕf) := |F (q(αf, ϕf))|2/V 2. (1.1)

All plots have the same logarithmic color scale, extending over eight decades from 10−8

to 1. Plot ranges in αf and ϕf are also standardized as far as reasonably possible. For
some geometries, the simulated detector image has some symmetry, namely horizontal
or/and vertical mirror planes:

I(αf, ϕf) = I(αf,−ϕf) = I(−αf,−ϕf) = I(αf,−ϕf). (1.2)

In these cases, we tend to restrict plots of I to the quadrant αf ≥ 0, ϕf ≥ 0. However,
it requires some experience to fully appreciate the information content of these plots.
For a demonstration of this, try to grasp the main features of Fig. 1.1. Then compare
with Fig. 1.2.

Finally, one warning: For large particles (typically of order 1000 nm), the form
factor oscillates rapidly within one detector bin so that analytical calculations (per-
formed for the bin center) may give a completely wrong intensity pattern. Several
ways to work around this problem are proposed in Sect. 5.3 of our reference paper [5].
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Figure 1.2: Same data as in Fig. 1.1, but now shown for all four quadrants (−5◦ ≤ ϕf, αf ≤ 5◦).
The vertical interference pattern, which gradually disappears with increasing tilt angle, is much
more salient in this plot than in the preceding one-quadrant representation.
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2 Hard particles

The following tables summarize the implemented particle geometries, roughly ordered
by decreasing symmetry. Afterwards, the detailed documentation is in alphabetical
order.

Shape Name Symmetry Parameters Reference

Dot R3 Rscat Page 25

FullSphere R3 R Page 28

FullSpheroid D∞h R, H Page 31

Cylinder D∞h R, H Page 21

TruncatedSphere C∞v R, H Page 47

TruncatedSpheroid C∞v R, H, fp Page 49

Cone C∞v R, H, α Page 15

Icosahedron Ih L Page 35

Dodecahedron Ih L Page 23

TruncatedCube Oh L, t Page 45

CantellatedCube Oh L, t Page 14
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Prism6 D6h R, H Page 39

Cone6 C6v R, H, α Page 17

Pyramid C4v L, H, α Page 41

Cuboctahedron C4v L, H, rH , α Page 19

Prism3 D3h L, H Page 37

Tetrahedron C3v L, H, α Page 43

EllipsoidalCylinder D2h Ra, Rb, H Page 26

Box D2h L, W , H Page 12

HemiEllipsoid C2v Ra, Rb, H Page 33

AnisoPyramid C2v L, W , H, α Page 10
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2.1 AnisoPyramid (rectangle-based)

Real-space geometry

Perspective
L

W

y

x

Top view

H

z

x

a

Side view

Figure 2.1: A truncated pyramid with a rectangular base.

Syntax and parameters

FormFactorAnisoPyramid(double length , double width , double height ,
double alpha)

with the parameters

• length of the base, L,

• width of the base, W ,

• height, H

• alpha, angle between the base and a side face, α.

They must fulfill

H ≤ tanα

2
min (L,W ).

Form factor, volume, horizontal section

F : computed using the generic polyhedron form factor [4],

V = H
[
LW − (L+W )H

tanα
+

4

3

H2

tan2 α

]
.

S = LW.
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Examples
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Figure 2.2: Normalized intensity |F |2/V 2, computed with L = 13 nm, W = 8 nm, H = 4.2 nm,
and α = 60◦, for four different angles ω of rotation around the z axis.

History
Agrees with the In-plane anisotropic pyramid form factor of IsGISAXS [1, Eq. 2.40] [2,
Eq. 217], except for different parametrization. This is not the anisotropic pyramid of
FitGISAXS, which is a true pyramid with an off-center apex [6].

Formfactors F (q) have been checked against the different computation of IsGISAXS,
and were found to fully agree.

See also

• Box (Sec. 2.2) if α = 0,

• Pyramid (Sec. 2.17) if L = W .
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2.2 Box (cuboid)

Real-space geometry

Perspective

W

L

x

y

Top view

H

x

z

Side view

Figure 2.3: A rectangular cuboid.

Syntax and parameters

FormFactorBox(double length , double width , double height)

with the parameters

• length of the base, L,

• width of the base, W ,

• height, H.

Form factor, volume, horizontal section

F = LWH exp

(
iqz

H

2

)
sinc

(
qx

L

2

)
sinc

(
qy

W

2

)
sinc

(
qz
H

2

)
,

V = LWH,

S = LW.

Examples
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Figure 2.4: Normalized intensity |F |2/V 2, computed with L = 18 nm, W = 4.6 nm, and
H = 3 nm, for four different angles ω of rotation around the z axis.
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History
Agrees with Box form factor of IsGISAXS [1, Eq. 2.38] [2, Eq. 214], except for factors
1/2 in the definitions of parameters L, W , H.

See also

• AnisoPyramid (Sec. 2.1) or Pyramid (Sec. 2.17) if sides are not vertical,

• TruncatedCube (Sec. 2.19) if L = W = H and corners are facetted,

• CantellatedCube (Sec. 2.3) if L = W = H and corners and edges are facetted,

• Sect. 3.1 if elongated in one horizontal direction.
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2.3 CantellatedCube

Real-space geometry

A cube with truncated edges and vertices as in Fig 7 of Croset 2017 [7]. Can also
be obtained by cantellating an octahedron.

Syntax and parameters

FormFactorCantellatedCube(double length , double removed_length)

with the parameters

• length of the full cube, L,

• removed_length, side length of the trirectangular tetrahedron removed from the
cube’s vertices, t.

They must fulfill

t ≤ L/2.

Form factor, volume, horizontal section

F : use the generic form factor of a polyhedron with inversion symmetry [4],

V = L3 − 6Lt2 +
16

3
t3.

S = L2.

Examples

History
Introduced in BornAgain–1.17 (Python only). Motivated by Croset 2017 [7].

See also

• Box (Sec. 2.2) if t = 0,

• TruncatedCube (Sec. 2.19) if only the vertices are facetted.
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2.4 Cone (circular)

Real-space geometry

Perspective
2R

y

x

Top view

H

z

x

a

Side view

Figure 2.5: A truncated cone with circular base.

Syntax and parameters

FormFactorCone(double radius , double height , double alpha)

with the parameters

• radius, R,

• height, H,

• alpha, angle between the side and the base, α.

They must fulfill

H ≤ R tanα.

Form factor, volume, horizontal section
Notation:

RH := R− H

tanα
, q∥ :=

√
q2x + q2y , q̃z := qz tanα.

Results:

F = 2π tanα eiq̃zR
∫ R

RH

dρ ρ2
J1(q∥ρ)

q∥ρ
e−iq̃zρ,

V =
π

3
tanα

(
R3 −R3

H

)
,

S = πR2.
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Examples
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Figure 2.6: Normalized intensity |F |2/V 2, computed with R = 4 nm, H = 11 nm, and α = 75◦,
for four different tilt angles ϑ (rotation around the y axis).

History and Derivation
Agrees with Cone form factor of IsGISAXS [1, Eq. 2.28] [2, Eq. 225], except for a
substitution z → ρ in our expression for F . Justification for complex q in the same
way as for the Cylinder form factor in Sec. 2.7.

See also

• Cylinder (Sec. 2.7) if α = 0.
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2.5 Cone6 (hexagonal)

Real-space geometry

Perspective
R

x

y

Top view

H

x

z

b

Side view

Figure 2.7: A truncated pyramid, based on a regular hexagon

Syntax and parameters

FormFactorCone6(double base_edge , double height , double alpha)

with the parameters

• base_edge, edge of the regular hexagonal base, R,

• height, H,

• alpha, dihedral angle between the base and a side face, α.

Note that the orthographic projection does not show α, but the angle β between the
base and a side edge. They are related through

√
3 tanα = 2 tanβ. The following is

written more conveniently in terms of β. The parameters must fulfill

H ≤ (tanβ)R.

Form factor, volume, horizontal section

F : computed using the generic polyhedron form factor [4],

V = tanβ

(
R3 −

(
R− H

tanβ

)3
)
,

S =
3
√
3R2

2
.
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Examples
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Figure 2.8: Normalized intensity |F |2/V 2, computed with R = 6 nm, H = 5 nm, and α = 60◦,
for four different angles ω of rotation around the z axis.

History
Our parametrization deviates from the form factor Cone6 of IsGISAXS[1, Eq. 2.32] [2,
Eq. 222].

Up to BornAgain-1.5 computed by numeric integration, as in IsGISAXS. Since
BornAgain-1.6 higher speed and better accuracy are achieved by using the generic
polyhedron form factor [4], with series expansions near singularities.

See also

• Prism6 (Sec. 2.16) if α = 0.
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2.6 Cuboctahedron

Real-space geometry

Perspective

L

L

x

y

Top view

rHH

H

z

x

Side view

Figure 2.9: A compound of two truncated pyramids with a common square base and opposite
orientations.

Syntax and parameters

FormFactorCuboctahedron(double length , double height , double
height_ratio , double alpha)

with the parameters

• length of the shared square base, L,

• height of the bottom pyramid, H,

• height_ratio between the top and the bottom pyramid, rH ,

• alpha, angle between the base and a side face, α.

They must fulfill

H ≤ tanα

2
L and rhH ≤ tanα

2
L.

Form factor, volume, horizontal section

F : computed using the generic polyhedron form factor [4],

V =
1

6
tan(α)L3

[
2−

(
1− 2H

L tan(α)

)3
−
(
1− 2rHH

L tan(α)

)3]
,

S = L2.
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Figure 2.10: Normalized intensity |F |2/V 2, computed with L = 8 nm, H = 5 nm, rH = 0.5,
and α = 60◦, for four different angles ω of rotation around the z axis.

History
Agrees with Cuboctahedron form factor of IsGISAXS [1, Eq. 2.34] [2, Eq. 218], except
for different parametrization L = 2RIsGISAXS. Since BornAgain-1.6 implemented using
the generic polyhedron form factor [4].

See also

• Box (Sec. 2.2) if α = 0,

• Pyramid (Sec. 2.17) if rH → ∞.
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2.7 Cylinder

Real-space geometry

Perspective

2R

y

x

Top view

H

z

x
Side view

Figure 2.11: An upright circular cylinder.

Syntax and parameters

FormFactorCylinder(double radius , double height)

with the parameters

• radius of the circular base, R,

• height, H.

Form factor, volume, horizontal section
Notation:

q∥ :=
√

q2x + q2y .

Note that this does not involve the sesquilinear product |qx|2 = q∗xqx but the plain
product qxqx of complex numbers (and analogous for qy).

Results:

F = 2πR2H sinc

(
qz
H

2

)
exp

(
iqz

H

2

)
J1(q∥R)

q∥R
,

V = πR2H,

S = πR2.
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Figure 2.12: Normalized intensity |F |2/V 2, computed with R = 3 nm and H = 8.8 nm, for
four different tilt angles ϑ (rotation around the y axis).

History and Derivation
For real wavevectors, this form factor is well known; it goes back to Lord Rayleigh. In
IsGISAXS, it has been implemented as form factor Cylinder [1, Eq. 2.27] [2, Eq. 223],
allowing for complex wavevectors.

Since it is not obvious that the standard formula also holds for complex q, let us
provide a derivation. We only consider the integral over the polar angle,

I(q) :=

∫ 2π

0
dφ exp (iqxr sinφ+ iqyr cosφ) . (2.1)

With the abbreviations a := r(qx + iqy)/2 and b := r(qx − iqy)/2,

I(q) =

∫ 2π

0
dφ exp

(
aeiφ − be−iφ

)
. (2.2)

Expansion of the exponential, combined with a binomial expansion of its argument,
yields

I(q) =

∫ 2π

0
dφ

∞∑
n=0

n∑
k=0

(−)k
an−kbk

(n− k)!k!
ei(n−2k)φ. (2.3)

The integral over φ vanishes except for n = 2k. Hence

I(q) = 2π
∞∑
k=0

(−)k
√
ab

2k

k!k!
= 2πJ0

(
rq∥
)
. (2.4)

To compute the ensueing radial integral
∫
drrJ0(rq∥), use tJ0(t) = d[tJ1(t)]/dt [3,

Formula 9.1.30a].

See also

• Cone (Sec. 2.4) or FullSpheroid (Sec. 2.12) if radius varies with z,

• EllipsoidalCylinder (Sec. 2.10) if cross secion is an ellipse.
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2.8 Dodecahedron

Real-space geometry

Figure 2.13: A regular dodecahedron.

Syntax and parameters

FormFactorDodecahedron(double edge)

with the parameter

• edge, length of one edge, a.

Form factor, volume, horizontal section

F : computed using the generic form factor of a polyhedron with inversion symmetry [4],

V =
1

4
(15 + 7

√
5)a3 ≈ 7.663 a3,

Examples
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Figure 2.14: Normalized intensity |F |2/V 2, computed with a = 3.2 nm, for three orientations
of high symmetry: x axis perpendicular to a polygonal face; vertex on the x axis; edge in the
xy plane and perpendicular to the x axis.
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Figure 2.15: Normalized intensity |F |2/V 2, computed with a = 3.2 nm, for three orientations
of decreasing symmetry: base pentagon in xy plane and pointing in x direction; rotated by 13◦

around the z axis; ditto, and tilted by 9◦ around the x axis.

History
New in BornAgain-1.6, based on the generic form factor of the polyhedron [4].
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2.9 Dot

Real-space geometry

A point with no spatial extension, hence with a constant form factor. This is
unphysical, but can be used e. g. to study structure factors without overlayed form
factor oscillations. To get dimensions right, this form factor nonetheless takes an
argument that specifies the radius of a FullSphere (Sec. 2.11) with same forward
scattering power.

Syntax and parameters

FormFactorDot(double radius)

with parameter

• radius, Rscat, radius of sphere with same F (0).

Form factor, volume, horizontal section

F =
4π

3
R3

scat,

V = 0,

S = 0.

History

Up to BornAgain 1.16, we simply had F = 1. The parameter Rscat was introduced
in release 1.17 to get dimensions right and to ensure correct intensity scales.

See also

• FullSphere (Sec. 2.11),

• GaussianCoil (??).
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2.10 EllipsoidalCylinder

Real-space geometry

Perspective

2rb

2ra

y

x

Top view

H

z

x

Side view

Figure 2.16: A upright cylinder whose cross section is an ellipse.

Syntax and parameters

FormFactorEllipsoidalCylinder(double radius_a , double radius_b ,
double height)

with the parameters

• radius_a, in x direction, Ra,

• radius_b, in y direction, Rb,

• height, H.

Form factor, volume, horizontal section
Notation:

γ :=
√
(qxRa)2 + (qyRb)2

Results:

F = 2πRaRbH exp

(
i
qzH

2

)
sinc

(
qzH

2

)
J1(γ)

γ
,

V = πRaRbH,

S = RaRb.
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Examples

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5

α
f(
◦ )

ω = 0◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ω = 30◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ω = 60◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ω = 90◦

10−8

10−6

10−4

10−2

100

|F
(q

)|2
/V

2

Figure 2.17: Normalized intensity |F |2/V 2, computed with Ra = 6.3 nm, Rb = 4.2 nm and
H = 3 nm, for four different angles ω of rotation around the z axis.

History
Agrees with the IsGISAXS form factor Ellipsoid [1, Eq. 2.41, wrongly labeled in Fig. 2.4]
or Ellipsoidal Cylinder [2, Eq. 224].

See also

• Cylinder (Sec. 2.7) if Ra = Rb.
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2.11 FullSphere

Real-space geometry

Perspective

2R

y

x

Top view

2R

z

x
Side view

Figure 2.18: A full sphere.

Syntax and parameters

FormFactorFullSphere(double radius)

with the parameter

• radius, R.

Form factor, volume, horizontal section
Notation:

q :=
√
q2x + q2y + q2z .

Note that this does not involve the sesquilinear product |qx|2 = q∗xqx but the plain
product qxqx of complex numbers (and analogous for qy, qz).

F =
4π

q3
exp(iqzR) [sin(qR)− qR cos(qR)] ,

V =
4π

3
R3,

S = πR2.
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Example

0 2 4
φf(
◦)

0

1

2

3

4

5

α
f(
◦ )

10−8

10−6

10−4

10−2

100

|F
(q

)|2
/V

2

Figure 2.19: Normalized intensity |F |2/V 2, computed with R = 3.9 nm.

History and Derivation
For real wavevectors, this form factor is well known; it goes back at least to Lord
Rayleigh. In IsGISAXS, it has been implemented as form factor Full sphere [1, Eq. 2.36]
[2, Eq. 226], allowing for complex wavevectors. Since it is not obvious that Rayleigh’s
formula also holds for complex q, let us outline a derivation (if you know a more elegant
one, we would like to hear).

If the origin is at the center of the sphere, then the form factor is

I(q, R) =

∫ R

0
dr r2

∫ π

0
dθ sin θ

∫ 2π

0
dφ eiqr (2.5)

with qr = qxr sin θ cosφ + qyr sin θ sinφ + qzr cos θ. For the integration over φ, see
Sec. 2.7 on the form factor of a cylinder:

I(q, R) = 2π

∫ R

0
dr r2

∫ π

0
dθ sin θ exp (iqz cos θ) J0

(
q∥r sin θ

)
(2.6)

with q∥ =
√
q2x + q2y . By symmetry, the imaginary part is zero, so that the exponential

reduces to a cosine:

I(q, R) = 2π

∫ R

0
dr r2

∫ π

0
dθ sin θ cos (qz cos θ) J0

(
q∥r sin θ

)
. (2.7)

Expand the outer cosine and the Bessel function:

I(q, R) = 2π

∫ R

0
dr r2

∫ π

0
dθ sin θ

∞∑
j=0

(−)j
(qzr cos θ)

2j

(2j)!

∞∑
k=0

(−)k
(q∥r sin θ)

2k

4kk!2
. (2.8)
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Sort by powers of r, and integrate:

I(q, R) = 2π

∞∑
n=0

(−)n
R2n+3

2n+ 3

n∑
k=0

qz
2n−2k

(2n− 2k)!

q∥
2k

4kk!2
ζ(k, n) (2.9)

with

ζ(k, n) :=

∫ π

0
dθ sin θ(cos θ)2n−2k(sin θ)2k. (2.10)

This integral [8, no. 2.512.4] yields

ζ(k, n) =
22k+1(2n− 2k)!n!k!

(2n+ 1)!(n− k)!
. (2.11)

Hence

I(q, R) = 4π
∞∑
n=0

(−)n
R2n+3

(2n+ 3)(2n+ 1)!

n∑
k=0

n!

(n− k)!k!
qz

2n−2kq∥
2k. (2.12)

The inner sum happens to be the binomial expansion of q2n =
(
qz

2 + q∥
2
)n. Therefore

(2.12) coincides with the series expansion of

I(q, R) = 4πq−3 (sin(qR)− qR cos(qR)) , (2.13)

which is what we wanted to prove.

See also

• Dot (Sec. 2.9) for R → 0 (but keeping V finite),

• Cylinder (Sec. 2.7),

• FullSpheroid (Sec. 2.12),

• TruncatedSphere (Sec. 2.20).
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2.12 FullSpheroid

Real-space geometry

Perspective

2R

y

x

Top view

H

z

x
Side view

Figure 2.20: A full spheroid, generated by rotating an ellipse around the vertical axis.

Syntax and parameters

FormFactorFullSpheroid(double radius , double height)

with the parameters

• radius, R,

• height, H.

Form factor, volume, horizontal section
Notation:

h := H/2, s :=
√
(Rqx)2 + (Rqy)2 + (hqz)2.

Results:

F = 4π exp(iqzh)R
2h

sin(s)− s cos(s)

s3
,

V =
4π

3
R2h,

S = πR2.
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Example
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Figure 2.21: Normalized intensity |F |2/V 2, computed with R = 3.5 nm and H = 9.8 nm, for
four different tilt angles ϑ (rotation around the y axis).

History and Derivation
Replicates the Full spheroid of IsGISAXS [1, Eq. 2.37] [2, Eq. 227], except for wrong
factors of 2 in their volume formula and form factor implementation. Up to BornAgain
1.16, our form factor computation followed IsGISAXS in using numeric integration in
the z coordinate.

Thanks to Matt Thompson (Australian National University) who pointed out
that the form factor of any spheroid can be reduced to that of the regular sphere
(Sec. 2.11) by rescaling rq = (Mr)(M−1q). In the present case (with revolution axis
along z), the transformation matrix is just M = diag(1/R, 1/R, 1/h). The resulting
simple expression for the form factor goes back at least to Guinier [9, p. 193].

See also

• FullSphere (Sec. 2.11) if H = 2R,

• TruncatedSpheroid (Sec. 2.21) if cut horizontally.
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2.13 HemiEllipsoid

Real-space geometry

Perspective

2rb

2ra

y

x

Top view

H

z

x

Side view

Figure 2.22: An horizontally oriented ellipsoid, truncated at the central plane.

Syntax and parameters

FormFactorHemiEllipsoid(double radius_a , double radius_b , double
height)

with the parameters

• radius_a, in x direction, Ra,

• radius_b, in y direction, Rb,

• height, equal to radius in z direction, H

Form factor, volume, horizontal section
Notation:

ra,z := Ra

√
1−

( z

H

)2
, rb,z := Rb

√
1−

( z

H

)2
, γz =

√
(qxra,z)2 + (qyrb,z)2.

Results:

F = 2π

∫ H

0
dz ra,zrb,z

J1(γz)

γz
exp(iqzz),

V =
2

3
πRaRbH,

S = πRaRb.
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Figure 2.23: Normalized intensity |F |2/V 2, computed with Ra = 10 nm, Rb = 3.8 nm and
H = 3.2 nm, for four different angles ω of rotation around the z axis.

History
Agrees with the IsGISAXS form factor Anisotropic hemi-ellipsoid [1, Eq. 2.42, with
wrong sign in the z-dependent phase factor] or Hemi-spheroid [2, Eq. 229].

See also

• TruncatedSpheroid (Sec. 2.21) if Ra = Rb,

• TruncatedSphere (Sec. 2.20) if Ra = Rb = H.
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2.14 Icosahedron

Real-space geometry

Figure 2.24: A regular icosahedron.

Syntax and parameters

FormFactorIcosahedron(double edge)

with the parameter

• edge, length of one edge, a.

Form factor, volume, horizontal section

F : computed using the generic form factor of a polyhedron with inversion symmetry [4],

V =
5

12
(3 +

√
5)a3 ≈ 2.182 a3
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Figure 2.25: Normalized intensity |F |2/V 2, computed with a = 4.8 nm, for three orientations
of high symmetry: x axis perpendicular to a polygonal face; vertex on the x axis; edge in the
xy plane and perpendicular to the x axis.
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Figure 2.26: Normalized intensity |F |2/V 2, computed with a = 4.8 nm, for three orientations
of decreasing symmetry: base pentagon in xy plane and pointing in x direction; rotated by 13◦

around the z axis; ditto, and tilted by 9◦ around the x axis.

History
New in BornAgain-1.6, based on the generic form factor of the polyhedron [4].
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2.15 Prism3 (triangular)

Real-space geometry

Perspective

x

y

L

Top view
x

z
H

Side view

Figure 2.27: A prism based on an equilateral triangle.

Syntax and parameters

FormFactorPrism3(double length , double height)

with the parameters

• length of one base edge, L,

• height, H.

Form factor, volume, horizontal section

F = H sinc

(
qz
H

2

)
exp

(
−iqz

H

2

)
F∥(q∥)

with the form factor F∥ of the base triangle computed using the generic form factor of
a planar polygon [4],

V =

√
3

4
HL2,

S =

√
3

4
L2.

Examples
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Figure 2.28: Normalized intensity |F |2/V 2, computed with L = 13.8 nm and H = 3 nm, for
four different angles ω of rotation around the z axis.

History
Has been validated against the Prism3 form factor of IsGISAXS [1, Eq. 2.29] [2,
Eq. 219]. Note the different parameterization L = 2RIsGISAXS. In FitGISAXS just
called Prism [6]. In BornAgain-1.6, redefined to let the x axis point along a symmetry
axis (rotated by 30◦ with respect to the previous version).

Reimplemented in BornAgain-1.6 using the generic form factor of a polygonal
prism [4], to achieve numerical stability near the removable singularity at q → 0.

See also

• Tetrahedron (Sec. 2.18) (trigonal pyramid) if sides are not vertical.
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2.16 Prism6 (hexagonal)

Real-space geometry

Perspective

R

y

x

Top view

H

z

x
Side view

Figure 2.29: A prism based on a regular hexagon.

Syntax and parameters

FormFactorPrism6(double radius , double height)

with the parameters

• radius of the hexagonal base, R,

• height, H.

Form factor, volume, horizontal section

F = H sinc

(
qz
H

2

)
exp

(
−iqz

H

2

)
F∥(q∥)

with the form factor F∥ of the base hexagon computed using the generic form factor
of a planar polygon with two-fold symmetry (S2) [4],

V =
3
√
3

2
HR2,

S =
3
√
3R2

2
.
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Examples
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Figure 2.30: Normalized intensity |F |2/V 2, computed with R = 5.7 nm and H = 3 nm, for
four different angles ω of rotation around the z axis.

History
Has been validated against the Prism6 form factor of IsGISAXS [1, Eq. 2.31] [2,
Eq. 221], which has different parametrization and lacks a factor H in F (q).

Reimplemented in BornAgain-1.5 using the generic form factor of a polygonal
prism with symmetry S2 [4], to achieve numerical stability near the removable singu-
larity at q → 0.

See also

• Cone6 (Sec. 2.5) (frustum with hexagonal base) if sides are not vertical.
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2.17 Pyramid (square-based)

Real-space geometry

Perspective

L

L

x

y

Top view

H

x

z

a

Side view

Figure 2.31: A truncated pyramid with a square base.

Syntax and parameters

FormFactorPyramid(double length , double height , double alpha)

with the parameters

• length of one edge of the square base, L,

• height, H,

• alpha, angle between the base and a side face, α,

They must fulfill

H ≤ tanα

2
L.

Form factor, volume, horizontal section

F : computed using the generic polyhedron form factor [4],

V =
1

6
L3 tanα

[
1−

(
1− 2H

L tanα

)3
]
, ,

S = L2.

v 1.17 BornAgain Form Factor Catalog 42



Examples

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5

α
f(
◦ )

ω = 0◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ω = 15◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ω = 30◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ω = 45◦

10−8

10−6

10−4

10−2

100

|F
(q

)|2
/V

2

Figure 2.32: Normalized intensity |F |2/V 2, computed with L = 10 nm, H = 4.2 nm and
α = 60◦, for four different angles ω of rotation around the z axis.

History
Corresponds to Pyramid form factor of IsGISAXS [1, Eq. 2.31] [2, Eq. 221], except for
different parametrization L = 2RIsGISXAXS and a corrected sign.

Reimplemented in BornAgain-1.6 using the generic form factor of a polygonal
prism [4], to achieve numerical stability near the removable singularity at q → 0.

See also

• AnisoPyramid (Sec. 2.1) if base is rectangular,

• Box (Sec. 2.2) if α = 0.
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2.18 Tetrahedron

Real-space geometry

Incorrectly named so, since it actually has five, not four surfaces. It’s a frustum with
trigonal base.

Perspective

x

y

L

Top view
x

z

H

α β

Side view

Figure 2.33: A truncated pyramid, based on an equilateral triangle.

Syntax and parameters

FormFactorTetrahedron(double length , double height , double alpha)

with the parameters

• length of one edge of the equilateral triangular base, L,

• height, H,

• alpha, dihedral angle between the base and a side face, α.

They must fulfill

H ≤ tanα

2
√
3
L.

The orthographic projection also shows the angle β between the base and a side edge.
It is related to the dihedral angle through tanα = 2 tanβ.

Form factor, volume, horizontal section

F : computed using the generic polyhedron form factor [4],

V =
tan(α)L3

24

1−(1− 2
√
3H

L tan(α)

)3
 ,

S =

√
3

4
L2.
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Examples
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Figure 2.34: Normalized intensity |F |2/V 2, computed with L = 12 nm, H = 8 nm, and
α = 75◦, for four different angles ω of rotation around the z axis. The low symmetry requires
other angular ranges than used in most other figures.

History
Previous implementations as Tetrahedron in IsGISAXS [1, Eq. 2.30] [2, Eq. 220], and
as Truncated tetrahedron in FitGISAXS [6]. In BornAgain-1.6, redefined to let the x

axis lie in a mirror plane (rotated by 30◦ with respect to the previous version).
Up to BornAgain-1.5, we computed the form factor by numeric integration, as in

IsGISAXS. Since BornAgain-1.6 higher speed and accuracy are achieved by using the
generic polyhedron form factor [4], with series expansions near singularities.

See also

• Prism3 (Sec. 2.15) if α = 0.
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2.19 TruncatedCube

Real-space geometry

Perspective

y

x
L

L

t

t

Top view

z

x

L

L

t

t

Side view

Figure 2.35: A cube whose eight vertices have been removed. The truncated part of each vertex
is a trirectangular tetrahedron.

Syntax and parameters

FormFactorTruncatedCube(double length , double removed_length)

with the parameters

• length of the full cube, L,

• removed_length, side length of the trirectangular tetrahedron removed from the
cube’s vertices, t.

They must fulfill

t ≤ L/2.

Form factor, volume, horizontal section

F : computed using the generic form factor of a polyhedron with inversion symmetry [4],

V = L3 − 4

3
t3,

S = L2.
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Examples
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Figure 2.36: Normalized intensity |F |2/V 2, computed with L = 25 nm, W = 10 nm, H = 8 nm,
and d = 5 nm, for four different angles ω of rotation around the z axis.

History
Until BornAgain–1.17 named TruncatedCube. Reimplemented in BornAgain–1.6 using
the generic form factor of a polygonal prism [4]. Motivated by [10].

See also

• Box (Sec. 2.2) if t = 0,

• CantellatedCube (Sec. 2.3) if edges are also facetted.
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2.20 TruncatedSphere

A spherical segment, obtained from a spherical ball by two parallel cuts.

Real-space geometry

Perspective

2R

y

x

Top view

H

z

x

dh

Side view

Figure 2.37: A truncated sphere.

Syntax and parameters

FormFactorTruncatedSphere(double radius , double height , double dh)

with the parameters

• radius, R,

• height, H,

• top removal, dh.

They must fulfill

0 < H ≤ 2R,

dh < H.

Special cases
A spherical cap is obtained from a spherical ball by a single cut. This is covered by
the following special parameterization of TruncatedSphere:

• Single cut at the bottom: dh = 0.

• Single cut at the top: H = 2R.
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Form factor, volume, horizontal section
Notation:

q∥ :=
√

q2x + q2y , Rz :=
√

R2 − z2.

Results:

F = 2π exp[iqz(H −R)]

∫ R−dh

R−H
dz R2

z

J1(q∥Rz)

q∥Rz
exp(iqzz)dz,

V =
π

3

[
3R
(
H2 − dh2

)
+ dh3 −H3

]
,

S =


π
(
2RH −H2

)
, H < R

πR2, H ≥ R, dh < R

π
(
2Rdh− dh2

)
, H ≥ R, dh ≥ R

.

Example
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Figure 2.38: Normalized intensity |F |2/V 2, computed with R = 4.2 nm and H = 6.1 nm, for
four different tilt angles ϑ (rotation around the y axis).

History and Derivation
Agrees with the IsGISAXS form factor Sphere [1, Eq. 2.33] or Truncated sphere [2,
Eq. 228]. Justification for complex q in the same way as for the Cylinder form factor
in Sec. 2.7.

See also

• FullSphere (Sec. 2.11) if dh = 0 and H = 2R,

• TruncatedSpheroid (Sec. 2.21) if vertically stretched or squeezed.
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2.21 TruncatedSpheroid

Real-space geometry

Perspective

2R

y

x

Top view
2R

H

fpR

z

x

dh

Side view

Figure 2.39: A vertically oriented, horizontally truncated spheroid.

Syntax and parameters

FormFactorTruncatedSpheroid(double radius , double height , double
height_flattening , double dh)

with the parameters

• radius, R,

• height, H,

• height_flattening, fp,

• top removal, dh.

They must fulfill

0 <
H

R
≤ 2fp.

dh < H.

Form factor, volume, horizontal section
Notation:

q∥ :=
√

q2x + q2y , Rz :=
√

R2 − z2/f2
p .

Results:

F = 2π exp[iqz(H − fpR)]

∫ fpR−dh

fpR−H
dz R2

z

J1(q∥Rz)

q∥Rz
exp(iqzz)
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V =
π

3f2
p

[
3Rfp

(
H2 − dh2

)
+ dh3 −H3

]
,

S =


π
(
2RfpH −H2

)
/f2

p , H < Rfp

πR2, H ≥ Rfp, dh < Rfp

π
(
2Rfpdh− dh2

)
/f2

p , H ≥ Rfp, dh ≥ Rfp

.

Example

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5

α
f(
◦ )

ϑ = 0◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ϑ = 10◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ϑ = 20◦

0 1 2 3 4 5
φf(
◦)

0

1

2

3

4

5
ϑ = 30◦

10−8

10−6

10−4

10−2

100

|F
(q

)|2
/V

2

Figure 2.40: Normalized intensity |F |2/V 2, computed with R = 3.3 nm, H = 9.8 nm, and
fp = 1.8, for four different tilt angles ϑ (rotation around the y axis).

History and Derivation
Agrees with the IsGISAXS form factor Sphere [1, Eq. 2.33] or TruncatedSpheroid [2,
Eq. 228]. Justification for complex q in the same way as for the Cylinder form factor
in Sec. 2.7.

See also

• FullSpheroid (Sec. 2.12) if dh = 0 and H = 2fpR,

• TruncatedSphere (Sec. 2.20) if fp = 1.
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3 Ripples

Elongated particles, or ripples, are typically used to model lamellar cuts or man-made
gratings.

As everywhere else in BornAgain only single scattering in the DWBA is simu-
lated. This can be insufficient for periodic gratings that cause noticeable higher-order
diffraction. To account for such dynamic scattering effects, it may be advisable to
compute Bloch waves [11] or use finite elements to solve the exact wave equation [12].
For the foreseeable future, this is not in the scope of BornAgain.

We choose ripples to be elongated in x direction. Different profiles in the yz plane
can be chosen: box, sinusoidal [Ripple1 (Sec. 3.2)], saw-tooth [Ripple2 (Sec. 3.3)].

For each of them, different profiles can also be chosen in the xz plane, each of
them characterized by a single parameter length, L. Their transverse form factor,
along the elongation axis x, is

f∥(qx) =


L sinc(qxL/2) box,
L exp(−(qxL)

2/8) Gauss,
L/(1 + (qxL)

2) Lorentz.

(3.1)

Constant factors have been chosen so that the forward scattering is the same in all three
cases, f∥(0) = L. The form factor is the Fourier transform of a correlation function.
The box form factor with its characteristic sinc function is the Fourier transform of a
rectangle function. A typical application could be a sample with tiny lateral extension
that is fully illuminated by a coherent incoming plane wave. In most other situations,
the correlation function is smooth rather than rectangular. The length parameter
then stands for a correlation length. It is dominated either by a finite extension of the
ripple, or by the coherence length of the scattering setup. The Gauss form factor is
the Fourier transform of a Gaussian correlation function; the Lorentz form factor is
the Fourier transform of an exponential in |x|.

History
The Box variant of Ripple1 and Ripple2 replicates two form factors from FitGISAXS
[6].

Full documentation and API support for all ripple form factors appeared in
BornAgain-1.17. Before that release, the Lorentz factor f∥ had an extra factor of
2.5 in the form factor.
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3.1 Bar (elongated box)

Real-space geometry

Perspective

W

L

x

y

Top view

H

x

z

Side view

Figure 3.1: A bar.

Syntax and parameters

FormFactorBox(
double length , double width , double height)

FormFactorBarGauss(
double length , double width , double height)

FormFactorBarLorentz(
double length , double width , double height)

with the parameters

• length of the base, L,

• width of the base, W ,

• height, H.

Form factor, volume, horizontal section

F = f∥(qx)WH exp

(
iqz

H

2

)
sinc

(
qy

W

2

)
sinc

(
qz
H

2

)
with f∥ as defined in (3.1),

V = LWH,

S = LW.

v 1.17 BornAgain Form Factor Catalog 53



3.2 Ripple1 (sinusoidal)

Real-space geometry

Perspective

y

x

L

W

Top view
W

H

y

z

Side view

Figure 3.2: A ripple with a sinusoidal profile.

Syntax and parameters

FormFactorRipple1Box(
double length , double width , double height)

FormFactorRipple1Gauss(
double length , double width , double height)

FormFactorRipple1Lorentz(
double length , double width , double height)

with the parameters

• length, L,

• width, W ,

• height, H.

The ripple is modelled as a surface

Z(y) =
H

2

[
1 + cos

2πy

W

]
.

Form factor
Using the inverse profile

Y (z) =
W

2π
arccos

(
2z

H
− 1

)
,
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the form factor is computed by numeric integration:

F = f∥(qx)

∫ H

0
dz eiqzz 2Y (z) sinc (qyY (z))

with f∥ defined in (3.1). The integration is substantially accelerated by the substitution
u = arccos(2z/H − 1).

Volume, horizontal section

V =
LWH

2
,

S = LW.

Examples
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Figure 3.3: Normalized intensity |F |2/V 2, computed with L = 25 nm, W = 10 nm and
H = 8 nm, for four different angles ω of rotation around the z axis.

History
Agrees with the Ripple1 form factor of FitGISAXS [6].
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3.3 Ripple2 (saw-tooth)

Real-space geometry

Perspective

L

W

x

y

Top view

H
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z

d

W/2

Side view

Figure 3.4: A ripple with an asymmetric saw-tooth profile.

Syntax and parameters

FormFactorRipple2Box(
double length , double width , double height , asymmetry)

FormFactorRipple2Gauss(
double length , double width , double height , asymmetry)

FormFactorRipple2Lorentz(
double length , double width , double height , asymmetry)

with the parameters

• length, L,

• width, W ,

• height, H.

• asymmetry, d.

They must fulfill

|d| ≤ W/2.
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Form factor, volume, horizontal section

F = f∥(qx)ie
−iqyd

[
eiα−/2 sinc

(α+

2

)
− eiα+/2 sinc

(α−
2

)]
,

with f∥ defined in (3.1).

α+ = Hqz +
qyW

2
+ qyd, α− = Hqz −

qyW

2
+ qyd,

V =
LWH

2
,

S = LW.
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Figure 3.5: Normalized intensity |F |2/V 2, computed with L = 25 nm, W = 10 nm, H = 8 nm,
and d = 5 nm, for four different angles ω of rotation around the z axis. The low symmetry
requires other angular ranges than used in most other figures.

History
Agrees with the Ripple2 form factor of FitGISAXS [6].
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4 Soft particles

A soft particle is characterized by a relative density ρ(r) that varies smoothly from
ρ(0) = 1 to ρ(∞) = 0. The actual scattering length density ρs(r) is the product of a
constant bulk value ρs with ρ(r).

The form factor of a soft particle is defined as the Fourier transform of ρ(r),

F (q) =

∫
d3r eiqrρ(r). (4.1)

The forward scattering power of the soft particle is the same as that of a hard particle
with volume

V = F (0) =

∫
d3r ρ(r). (4.2)
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4.1 Gaussian ellispoid

Syntax and parameters

FormFactorGauss(double width , double height)

with the parameters

• width, W ,

• height, H.

Form factor, volume, horizontal section

F =
LH

qy
sinc

(
qxL

2

)
ie−iqyd

[
eiα−/2 sinc

(α+

2

)
− eiα+/2 sinc

(α−
2

)]
,

α+ = Hqz +
qyW

2
+ qyd, α− = Hqz −

qyW

2
+ qyd,

V =
LWH

2
,

S = LW.
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Figure 4.1: Normalized intensity |F |2/V 2, computed with L = 25 nm, W = 10 nm, H = 8 nm,
and d = 5 nm, for four different angles ω of rotation around the z axis. The low symmetry
requires other angular ranges than used in most other figures.
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Index

Absorption, 5
Anisotropic pyramid, 10

Ball, see Sphere
Bessel function, 5
Box, 12, 52

Cantellation
cube, 14

Cap, 47
Citation, 4
Coherence length, 51
Cone, see Frustum
Coordinates, 5
Correlation length, 51
CreateRotateX, 9
Cube, 12

cantellated, 14
truncated, 45

Cuboctahedron, 19
Cuboid, see Box
Cylinder, 21

ellipsoidal, 26

Density, 57
Distorted-wave Born approximation, 4
Dodecahedron, 23
Dot, 25

Ellipsoid
Gaussian, 58
truncated, 33

Ellipsoidal cylinder, 26
Expansion, see Cantellation

FormFactorAnisoPyramid, 10
FormFactorBarGauss, 52
FormFactorBarLorentz, 52
FormFactorBox, 12, 52
FormFactorCantellatedCube, 14
FormFactorCone, 15

FormFactorCone6, 17
FormFactorCuboctahedron, 19
FormFactorCylinder, 21
FormFactorDodecahedron, 23
FormFactorDot, 25
FormFactorEllipsoidalCylinder, 26
FormFactorFullSphere, 28
FormFactorFullSpheroid, 31
FormFactorGauss, 58
FormFactorHemiEllipsoid, 33
FormFactorIcosahedron, 35
FormFactorPrism3, 37
FormFactorPrism6, 39
FormFactorPyramid, 41
FormFactorRipple1Box, 53
FormFactorRipple1Gauss, 53
FormFactorRipple1Lorentz, 53
FormFactorRipple2Box, 55
FormFactorRipple2Gauss, 55
FormFactorRipple2Lorentz, 55
FormFactorTetrahedron, 43
FormFactorTruncatedCube, 45
FormFactorTruncatedSphere, 47
FormFactorTruncatedSpheroid, 49
Fourier transform, 57
Frustum

circular base, 15
hexagonal base, 17
reactangular base, 10
square base, 41
triangular base, 43

Full sphere, 28
Full spheroid, 31

Gaussian
soft particle, 58
transverse form factor, 51

Hemi ellipsoid, 33

Icosahedron, 35
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J1 (Bessel function), 5

Large particles
numeric difficulty, 6

Lorentzian
transverse form factor, 51

Mirror planes, 6
Monte-Carlo integration

for large particle form factor, 6

Numeric difficulty
form factor oscillation, 6

Octahedron
cantellated, 14

Orientation of particles, 9
Oscillation

from large particle form factor, 6

Particle
elongated, see Ripple
hard, 8–50
rapid form factor oscillation, 6
soft, 57–58

Platonic solid
cube, 12
dodecahedron, 23
icosahedron, 35
octahedron, 19
tetrahedron, 43

Plotting, 6
Polyhedron

generic algorithm, 5
Prism

hexagonal, 39
reactangular, see Box
triangular, 37

Pyramid
hexagonal, 17
rectangular, 10, 43
square, 41

q (scattering vector), 5
Quadrature, 5

ρ (density), 57
Refractive index, 6
Ripple, 51–56

saw-tooth, 55
sinusoidal, 53

Rotation of particles, 9

Saw-tooth ripple, 55
Scattering length density, 57
Scattering vector, 5
Segment

spherical, 47
Shape transform, 5
sinc (sinus cardinalis), 5
Singularity

in form factor computation, 5
Sinusoidal ripple, 53
Sphere, 28

cap, 47
segment, 47

Spheroid, 31
truncated, 49

Surface, 5
Symmetry, 6

Tetrahedron, 43
Tilt, see Rotation
Transform3D, 9
Transverse form factor, 51
Truncation, see also Facetting

cone, see Frustum
cube, 45
ellipsoid, 33
pyramid, see Frustum
sphere, 47
spheroid, 49

Volume, 5, 6

z (surface normal coordinate), 5
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