## BornAgain

# Form Factor Catalog 

## Software version 1.17

This document last updated August 4, 2020

Céline Durniak, Marina Ganeva, Gennady Pospelov, Walter Van Herck, Joachim Wuttke

Scientific Computing Group<br>Jülich Centre for Neutron Science<br>at Heinz Maier-Leibnitz Zentrum Garching<br>Forschungszentrum Jülich GmbH

| Homepage: | http://www.bornagainproject.org |
| :---: | :---: |
| Copyright: | Forschungszentrum Jülich GmbH 2013-2020 |
| Licenses: | Software: GNU General Public License version 3 or higher <br> Documentation: Creative Commons CC-BY-SA |
| Authors: | Céline Durniak, Marina Ganeva, Gennady Pospelov, Walter Van Herck, Joachim Wuttke <br> Scientific Computing Group at Heinz Maier-Leibnitz Zentrum (MLZ) Garching |
| Disclaimer: | Software and documentation are work in progress. <br> We cannot guarantee correctness and accuracy. <br> If in doubt, contact us for assistance or scientific collaboration. |
| Funding: | This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654000. |

## Contents

Preface ..... 4
About BornAgain ..... 4
Citation ..... 4
1 Introduction ..... 5
2 Hard particles ..... 8
2.1 AnisoPyramid (rectangle-based) ..... 10
2.2 Box (cuboid) ..... 12
2.3 CantellatedCube ..... 14
2.4 Cone (circular) ..... 15
2.5 Cone6 (hexagonal) ..... 17
2.6 Cuboctahedron ..... 19
2.7 Cylinder ..... 21
2.8 Dodecahedron ..... 23
2.9 Dot ..... 25
2.10 EllipsoidalCylinder ..... 26
2.11 FullSphere ..... 28
2.12 FullSpheroid ..... 31
2.13 HemiEllipsoid ..... 33
2.14 Icosahedron ..... 35
2.15 Prism3 (triangular) ..... 37
2.16 Prism6 (hexagonal) ..... 39
2.17 Pyramid (square-based) ..... 41
2.18 Tetrahedron ..... 43
2.19 TruncatedCube ..... 45
2.20 TruncatedSphere ..... 47
2.21 TruncatedSpheroid ..... 49
3 Ripples ..... 51
3.1 Bar (elongated box) ..... 52
3.2 Ripple1 (sinusoidal) ..... 53
3.3 Ripple2 (saw-tooth) ..... 55
4 Soft particles ..... 57
4.1 Gaussian ellispoid ..... 58
References ..... 59
Index ..... 60

## Preface

## About BornAgain

BornAgain is a software package to simulate and fit reflectometry, off-specular scattering, and grazing-incidence small-angle scattering (GISAS) of X-rays and neutrons. It provides a generic framework for modeling multilayer samples with smooth or rough interfaces and with various types of embedded nanoparticles. The name, BornAgain, alludes to the central role of the distorted-wave Born approximation (DWBA) in the physical description of the scattering process.

BornAgain is maintained by the Scientific Computing Group of the Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Garching, Germany. It free and open source software. The source code is released under the GNU General Public License (GPL, version 3 or higher), the documentation under the Creative Commons license CC-BY-SA.

## Citation

The canonical reference for BornAgain is the journal article
Gennady Pospelov, Walter Van Herck, Jan Burle, Juan M. Carmona Loaiza, Céline Durniak, Jonathan M. Fisher, Marina Ganeva, Dmitry Yurov and Joachim Wuttke:
BornAgain: software for simulating and fitting grazing-incidence smallangle scattering
J. Appl. Cryst. 53, 262-276 (2020)

Use of the software should additionally be documented by citing a specific version thereof

BornAgain - Software for simulating and fitting X-ray and neutron smallangle scattering at grazing incidence, version $\langle$ version $\rangle(\langle$ release date $\rangle$ ), http://www.bornagainproject.org

Citation of the present document is only necessary when referring to specific information about form factors.

## 1 Introduction

BornAgain comes with a comprehensive collection of hard-coded shape transforms for standard particle geometries like spheres, cylinders, prisms, pyramids or ripples. This collection is documented in the following. For each shape, the real-space geometry is shown in orthogonal projections, the parameters of the BornAgain method are defined, an analytical expression for the form factor is given, and exemplary results for $|F(\mathbf{q})|^{2}$ versus $\alpha_{\mathrm{f}}, \phi_{\mathrm{f}}$ are shown for small-angle scattering conditions ( $\alpha_{\mathrm{i}}=\phi_{\mathrm{i}}=0$ ).

The computation of $F(\mathbf{q})$ is based on shapes $S(\mathbf{r})$ given in Cartesian coordinates, as defined in the orthogonal projections. Typically, the vertical $(z)$ direction is chosen along a symmetry axis of the particle. The origin is always at the center of the bottom side of the particle. Different parametrization or a different choice of the origin cause our analytic form factors to trivially deviate from expressions given in the IsGISAXS manual [ 1 , Sec. 2.3] or in the literature [ 2 , Appendix].

We made sure that all expressions also hold for complex scattering vectors $\mathbf{q}$, used to describe in order to take any material absorption into account. In standard reflectometry geometry, with reference surface normal to $\hat{\mathbf{z}}$, only the vertical components of $\mathbf{k}_{\mathbf{i}}$ and $\mathbf{k}_{\mathrm{f}}$ can have imaginary parts. However, for tilted particles $F(\tilde{\mathbf{q}})$ needs to be computed with a rotated scattering vector $\tilde{\mathbf{q}}$ that may be complex in all three components. Therefore BornAgain allows all three components of $\mathbf{q}$ to be complex.

In the following, information about the implemented geometries is given in standardized form. Analytical expressions are given for the form factor $F(\mathbf{q})$, for the volume $V=F(0)$, and for the maximum horizontal section $S$ (the area of the particle as seen from above). Mathematical notation in the form factor expressions includes the cardinal sine functions $\operatorname{sinc}(z):=\sin (z) / z$ and the Bessel function of first kind and first order $J_{1}(z)[3, \mathrm{Ch} .9]$. If results contain an integral, then no analytical form was found, and the integral is evaluated by numeric quadrature. For polyhedral figures, except a few simple ones like the rectangular box, we use a generic form factor computation, parametrized by the vertices of the figure, that is described in full detail in a mathematical paper [4].

Almost all analytical expressions for $F(\mathbf{q})$ contain removable singularities for certain values of $\mathbf{q}$. Our implementation uses proper analytic continuations at these singularities, though this is not explicitly denoted in the following formula collection. Furthermore, series expansions are used to ensure numeric accuracies in the neighborhood of the singularities. For polyhedra, see Ref. [4] for a meticulous discussion.

Geometrical objects can be parametrized in different ways. Concerns about user experience and about code readability sometimes lead to different choices. For the


Figure 1.1: Normalized intensity $I\left(\alpha_{\mathrm{f}}, \phi_{\mathrm{f}}\right)$ for small-angle scattering by a truncated sphere with $R=4.2 \mathrm{~nm}$ and $H=6.1 \mathrm{~nm}$, for four different tilt angles $\vartheta$ (rotation around the $y$ axis). Since $I$ possess the standard symmetry (1.2), data are only shown for first quadrant $0^{\circ} \leq \phi_{\mathrm{f}}, \alpha_{\mathrm{f}} \leq 5^{\circ}$.

BornAgain user interfaces (GUI and API) we have chosen the most standard parameters, as used in elementary geometry, like length, height, radius, even if this is at variance from the IsGISAXS precedent. Where our parametrization made analytic expressions too tedious, we use alternate internal parameters to alleviate the formulæ.

Examplary form factors are numerically computed in Born approximation. All simulations scripts can be found in the BornAgain sources in directory Doc/FFCat$\operatorname{alog} / \mathrm{fig} / \mathrm{ff} 2$. The particles are assigned a refractive index of $n=10^{-5}$. Parameters are chosen such that the particle volume $V$ is about $250 \mathrm{~nm}^{3}$ (within $\pm 5 \%$ ); except ripples, which are chosen with a vertical section $V / L$ of $40 \mathrm{~nm}^{2}$ and a length of 25 nm . The incident wavelength is $1 \AA$. The incident beam is always in $x$ direction, hence $\alpha_{\mathrm{i}}=\phi_{\mathrm{i}}=0$. Simulated detector images are normalized to the maximum scattering intensity at $F(0)=V$,

$$
\begin{equation*}
I\left(\alpha_{\mathrm{f}}, \phi_{\mathrm{f}}\right):=\left|F\left(q\left(\alpha_{\mathrm{f}}, \phi_{\mathrm{f}}\right)\right)\right|^{2} / V^{2} . \tag{1.1}
\end{equation*}
$$

All plots have the same logarithmic color scale, extending over eight decades from $10^{-8}$ to 1 . Plot ranges in $\alpha_{\mathrm{f}}$ and $\phi_{\mathrm{f}}$ are also standardized as far as reasonably possible. For some geometries, the simulated detector image has some symmetry, namely horizontal or/and vertical mirror planes:

$$
\begin{equation*}
I\left(\alpha_{\mathrm{f}}, \phi_{\mathrm{f}}\right)=I\left(\alpha_{\mathrm{f}},-\phi_{\mathrm{f}}\right)=I\left(-\alpha_{\mathrm{f}},-\phi_{\mathrm{f}}\right)=I\left(\alpha_{\mathrm{f}},-\phi_{\mathrm{f}}\right) . \tag{1.2}
\end{equation*}
$$

In these cases, we tend to restrict plots of $I$ to the quadrant $\alpha_{\mathrm{f}} \geq 0, \phi_{\mathrm{f}} \geq 0$. However, it requires some experience to fully appreciate the information content of these plots. For a demonstration of this, try to grasp the main features of Fig. 1.1. Then compare with Fig. 1.2.

Finally, one warning: For large particles (typically of order 1000 nm ), the form factor oscillates rapidly within one detector bin so that analytical calculations (performed for the bin center) may give a completely wrong intensity pattern. Several ways to work around this problem are proposed in Sect. 5.3 of our reference paper [5].


Figure 1.2: Same data as in Fig. 1.1, but now shown for all four quadrants ( $-5^{\circ} \leq \phi_{\mathrm{f}}, \alpha_{\mathrm{f}} \leq 5^{\circ}$ ). The vertical interference pattern, which gradually disappears with increasing tilt angle, is much more salient in this plot than in the preceding one-quadrant representation.

## 2 Hard particles

The following tables summarize the implemented particle geometries, roughly ordered by decreasing symmetry. Afterwards, the detailed documentation is in alphabetical order.

| Shape | Name | Symmetry | Parameters | Reference |
| :---: | :---: | :---: | :---: | :---: |
| - | Dot | $\mathrm{R}_{3}$ | $R_{\text {scat }}$ | Page 25 |
|  | FullSphere | $\mathrm{R}_{3}$ | $R$ | Page 28 |
|  | FullSpheroid | $\mathrm{D}_{\infty}$ | $R, H$ | Page 31 |
|  | Cylinder | $\mathrm{D}_{\infty}$ | $R, H$ | Page 21 |
|  | TruncatedSphere | $\mathrm{C}_{\infty \mathrm{v}}$ | $R, H$ | Page 47 |
|  | TruncatedSpheroid | $\mathrm{C}_{\infty \mathrm{v}}$ | $R, H, f_{p}$ | Page 49 |
|  | Cone | $\mathrm{C}_{\infty \mathrm{v}}$ | $R, H, \alpha$ | Page 15 |
|  | Icosahedron | $\mathrm{I}_{\mathrm{h}}$ | $L$ | Page 35 |
|  | Dodecahedron | $\mathrm{I}_{\mathrm{h}}$ | $L$ | Page 23 |
|  | TruncatedCube | $\mathrm{O}_{\mathrm{h}}$ | $L, t$ | Page 45 |
|  | CantellatedCube | $\mathrm{O}_{\mathrm{h}}$ | $L, t$ | Page 14 |


| Prism6 | $\mathrm{D}_{6 \mathrm{~h}}$ | $R, H$ | Page 39 |
| :---: | :---: | :---: | :---: |
| Cone6 | $\mathrm{C}_{6 \mathrm{v}}$ | $R, H, \alpha$ | Page 17 |
| Pyramid | $\mathrm{C}_{4 \mathrm{v}}$ | $L, H, \alpha$ | Page 41 |
| Cuboctahedron | $\mathrm{C}_{4 \mathrm{v}}$ | $L, H, r_{H}, \alpha$ | Page 19 |
| Prism3 | $\mathrm{D}_{3 \mathrm{~h}}$ | L, H | Page 37 |
| Tetrahedron | $\mathrm{C}_{3 \mathrm{v}}$ | $L, H, \alpha$ | Page 43 |
| EllipsoidalCylinder | $\mathrm{D}_{2 \mathrm{~h}}$ | $R_{a}, R_{b}, H$ | Page 26 |
| Box | $\mathrm{D}_{2 \mathrm{~h}}$ | $L, W, H$ | Page 12 |
| HemiEllipsoid | $\mathrm{C}_{2 \mathrm{v}}$ | $R_{a}, R_{b}, H$ | Page 33 |
| AnisoPyramid | $\mathrm{C}_{2 \mathrm{v}}$ | $L, W, H, \alpha$ | Page 10 |

### 2.1 AnisoPyramid (rectangle-based)

## Real-space geometry



Figure 2.1: A truncated pyramid with a rectangular base.

## Syntax and parameters

```
FormFactorAnisoPyramid(double length, double width, double height,
    double alpha)
```

with the parameters

- length of the base, $L$,
- width of the base, $W$,
- height, $H$
- alpha, angle between the base and a side face, $\alpha$.

They must fulfill

$$
H \leq \frac{\tan \alpha}{2} \min (L, W)
$$

## Form factor, volume, horizontal section

$F:$ computed using the generic polyhedron form factor [4],

$$
\begin{aligned}
V & =H\left[L W-\frac{(L+W) H}{\tan \alpha}+\frac{4}{3} \frac{H^{2}}{\tan ^{2} \alpha}\right] \\
S & =L W
\end{aligned}
$$

## Examples



Figure 2.2: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=13 \mathrm{~nm}, W=8 \mathrm{~nm}, H=4.2 \mathrm{~nm}$, and $\alpha=60^{\circ}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Agrees with the In-plane anisotropic pyramid form factor of IsGISAXS [1, Eq. 2.40] [2, Eq. 217], except for different parametrization. This is not the anisotropic pyramid of FitGISAXS, which is a true pyramid with an off-center apex [6].

Formfactors $F(\mathbf{q})$ have been checked against the different computation of IsGISAXS, and were found to fully agree.

## See also

- Box (Sec. 2.2) if $\alpha=0$,
- Pyramid (Sec. 2.17) if $L=W$.


### 2.2 Box (cuboid)

## Real-space geometry


Perspective

Top view

Side view

Figure 2.3: A rectangular cuboid.

## Syntax and parameters

```
FormFactorBox(double length, double width, double height)
```

with the parameters

- length of the base, $L$,
- width of the base, $W$,
- height, $H$.


## Form factor, volume, horizontal section

$$
\begin{aligned}
F & =L W H \exp \left(i q_{z} \frac{H}{2}\right) \operatorname{sinc}\left(q_{x} \frac{L}{2}\right) \operatorname{sinc}\left(q_{y} \frac{W}{2}\right) \operatorname{sinc}\left(q_{z} \frac{H}{2}\right) \\
V & =L W H \\
S & =L W
\end{aligned}
$$

## Examples



Figure 2.4: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=18 \mathrm{~nm}, W=4.6 \mathrm{~nm}$, and $H=3 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Agrees with Box form factor of IsGISAXS [1, Eq. 2.38] [2, Eq. 214], except for factors $1 / 2$ in the definitions of parameters $L, W, H$.

## See also

- AnisoPyramid (Sec. 2.1) or Pyramid (Sec. 2.17) if sides are not vertical,
- TruncatedCube (Sec. 2.19) if $L=W=H$ and corners are facetted,
- CantellatedCube (Sec. 2.3) if $L=W=H$ and corners and edges are facetted,
- Sect. 3.1 if elongated in one horizontal direction.


### 2.3 CantellatedCube

## Real-space geometry

A cube with truncated edges and vertices as in Fig 7 of Croset 2017 [7]. Can also be obtained by cantellating an octahedron.

## Syntax and parameters

```
FormFactorCantellatedCube(double length, double removed_length)
```

with the parameters

- length of the full cube, $L$,
- removed_length, side length of the trirectangular tetrahedron removed from the cube's vertices, $t$.

They must fulfill
$t \leq L / 2$.

## Form factor, volume, horizontal section

$F$ : use the generic form factor of a polyhedron with inversion symmetry [4],

$$
\begin{aligned}
& V=L^{3}-6 L t^{2}+\frac{16}{3} t^{3} . \\
& S=L^{2} .
\end{aligned}
$$

## Examples

## History

Introduced in BornAgain-1.17 (Python only). Motivated by Croset 2017 [7].

## See also

- Box (Sec. 2.2) if $t=0$,
- TruncatedCube (Sec. 2.19) if only the vertices are facetted.


### 2.4 Cone (circular)

## Real-space geometry



Figure 2.5: A truncated cone with circular base.

## Syntax and parameters

## FormFactorCone(double radius, double height, double alpha)

with the parameters

- radius, $R$,
- height, $H$,
- alpha, angle between the side and the base, $\alpha$.

They must fulfill

$$
H \leq R \tan \alpha
$$

Form factor, volume, horizontal section
Notation:

$$
R_{H}:=R-\frac{H}{\tan \alpha}, \quad q_{\|}:=\sqrt{q_{x}^{2}+q_{y}^{2}}, \quad \tilde{q}_{z}:=q_{z} \tan \alpha
$$

Results:

$$
\begin{aligned}
& F=2 \pi \tan \alpha \mathrm{e}^{i \tilde{q}_{z} R} \int_{R_{H}}^{R} \mathrm{~d} \rho \rho^{2} \frac{J_{1}\left(q_{\|} \rho\right)}{q_{\|} \rho} \mathrm{e}^{-i \tilde{q}_{z} \rho}, \\
& V=\frac{\pi}{3} \tan \alpha\left(R^{3}-R_{H}^{3}\right), \\
& S=\pi R^{2} .
\end{aligned}
$$

## Examples



Figure 2.6: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=4 \mathrm{~nm}, H=11 \mathrm{~nm}$, and $\alpha=75^{\circ}$, for four different tilt angles $\vartheta$ (rotation around the $y$ axis).

## History and Derivation

Agrees with Cone form factor of IsGISAXS [1, Eq. 2.28] [2, Eq. 225], except for a substitution $z \rightarrow \rho$ in our expression for $F$. Justification for complex $q$ in the same way as for the Cylinder form factor in Sec. 2.7.

## See also

- Cylinder (Sec. 2.7) if $\alpha=0$.


### 2.5 Cone6 (hexagonal)

## Real-space geometry



Figure 2.7: A truncated pyramid, based on a regular hexagon

## Syntax and parameters

```
FormFactorCone6(double base_edge, double height, double alpha)
```

with the parameters

- base_edge, edge of the regular hexagonal base, $R$,
- height, $H$,
- alpha, dihedral angle between the base and a side face, $\alpha$.

Note that the orthographic projection does not show $\alpha$, but the angle $\beta$ between the base and a side edge. They are related through $\sqrt{3} \tan \alpha=2 \tan \beta$. The following is written more conveniently in terms of $\beta$. The parameters must fulfill

$$
H \leq(\tan \beta) R
$$

## Form factor, volume, horizontal section

$F$ : computed using the generic polyhedron form factor [4],

$$
\begin{aligned}
& V=\tan \beta\left(R^{3}-\left(R-\frac{H}{\tan \beta}\right)^{3}\right) \\
& S=\frac{3 \sqrt{3} R^{2}}{2}
\end{aligned}
$$

## Examples



Figure 2.8: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=6 \mathrm{~nm}, H=5 \mathrm{~nm}$, and $\alpha=60^{\circ}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Our parametrization deviates from the form factor Cone6 of IsGISAXS[1, Eq. 2.32] [2, Eq. 222].

Up to BornAgain-1.5 computed by numeric integration, as in IsGISAXS. Since BornAgain-1.6 higher speed and better accuracy are achieved by using the generic polyhedron form factor [4], with series expansions near singularities.

## See also

- Prism6 (Sec. 2.16) if $\alpha=0$.


### 2.6 Cuboctahedron

## Real-space geometry



Figure 2.9: A compound of two truncated pyramids with a common square base and opposite orientations.

## Syntax and parameters

```
FormFactorCuboctahedron(double length, double height, double
    height_ratio, double alpha)
```

with the parameters

- length of the shared square base, $L$,
- height of the bottom pyramid, $H$,
- height_ratio between the top and the bottom pyramid, $r_{H}$,
- alpha, angle between the base and a side face, $\alpha$.

They must fulfill

$$
H \leq \frac{\tan \alpha}{2} L \quad \text { and } \quad r_{h} H \leq \frac{\tan \alpha}{2} L
$$

## Form factor, volume, horizontal section

$F$ : computed using the generic polyhedron form factor [4],

$$
\begin{aligned}
& V=\frac{1}{6} \tan (\alpha) L^{3}\left[2-\left(1-\frac{2 H}{L \tan (\alpha)}\right)^{3}-\left(1-\frac{2 r_{H} H}{L \tan (\alpha)}\right)^{3}\right] \\
& S=L^{2}
\end{aligned}
$$

## Examples



Figure 2.10: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=8 \mathrm{~nm}, H=5 \mathrm{~nm}, r_{H}=0.5$, and $\alpha=60^{\circ}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Agrees with Cuboctahedron form factor of IsGISAXS [1, Eq. 2.34] [2, Eq. 218], except for different parametrization $L=2 R_{\text {Isgisaxs }}$. Since BornAgain- 1.6 implemented using the generic polyhedron form factor [4].

## See also

- Box (Sec. 2.2) if $\alpha=0$,
- Pyramid (Sec. 2.17) if $r_{H} \rightarrow \infty$.


### 2.7 Cylinder

## Real-space geometry



Perspective


Top view


Side view

Figure 2.11: An upright circular cylinder.

## Syntax and parameters

```
FormFactorCylinder(double radius, double height)
```

with the parameters

- radius of the circular base, $R$,
- height, $H$.


## Form factor, volume, horizontal section

Notation:

$$
q_{\|}:=\sqrt{q_{x}^{2}+q_{y}^{2}}
$$

Note that this does not involve the sesquilinear product $\left|q_{x}\right|^{2}=q_{x}^{*} q_{x}$ but the plain product $q_{x} q_{x}$ of complex numbers (and analogous for $q_{y}$ ).

Results:

$$
F=2 \pi R^{2} H \operatorname{sinc}\left(q_{z} \frac{H}{2}\right) \exp \left(i q_{z} \frac{H}{2}\right) \frac{J_{1}\left(q_{\|} R\right)}{q_{\|} R}
$$

$$
V=\pi R^{2} H
$$

$$
S=\pi R^{2}
$$

## Examples



Figure 2.12: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=3 \mathrm{~nm}$ and $H=8.8 \mathrm{~nm}$, for four different tilt angles $\vartheta$ (rotation around the $y$ axis).

## History and Derivation

For real wavevectors, this form factor is well known; it goes back to Lord Rayleigh. In IsGISAXS, it has been implemented as form factor Cylinder [1, Eq. 2.27] [2, Eq. 223], allowing for complex wavevectors.

Since it is not obvious that the standard formula also holds for complex $\mathbf{q}$, let us provide a derivation. We only consider the integral over the polar angle,

$$
\begin{equation*}
I(\mathbf{q}):=\int_{0}^{2 \pi} \mathrm{~d} \varphi \exp \left(i q_{x} r \sin \varphi+i q_{y} r \cos \varphi\right) \tag{2.1}
\end{equation*}
$$

With the abbreviations $a:=r\left(q_{x}+i q_{y}\right) / 2$ and $b:=r\left(q_{x}-i q_{y}\right) / 2$,

$$
\begin{equation*}
I(\mathbf{q})=\int_{0}^{2 \pi} \mathrm{~d} \varphi \exp \left(a \mathrm{e}^{i \varphi}-b \mathrm{e}^{-i \varphi}\right) \tag{2.2}
\end{equation*}
$$

Expansion of the exponential, combined with a binomial expansion of its argument, yields

$$
\begin{equation*}
I(\mathbf{q})=\int_{0}^{2 \pi} \mathrm{~d} \varphi \sum_{n=0}^{\infty} \sum_{k=0}^{n}(-)^{k} \frac{a^{n-k} b^{k}}{(n-k)!k!} \mathrm{e}^{i(n-2 k) \varphi} \tag{2.3}
\end{equation*}
$$

The integral over $\varphi$ vanishes except for $n=2 k$. Hence

$$
\begin{equation*}
I(\mathbf{q})=2 \pi \sum_{k=0}^{\infty}(-)^{k} \frac{\sqrt{a b}^{2 k}}{k!k!}=2 \pi J_{0}\left(r q_{\|}\right) \tag{2.4}
\end{equation*}
$$

To compute the ensueing radial integral $\int \mathrm{d} r r J_{0}\left(r q_{\|}\right)$, use $t J_{0}(t)=\mathrm{d}\left[t J_{1}(t)\right] / \mathrm{d} t[3$, Formula 9.1.30a].

## See also

- Cone (Sec. 2.4) or FullSpheroid (Sec. 2.12) if radius varies with $z$,
- EllipsoidalCylinder (Sec. 2.10) if cross secion is an ellipse.


### 2.8 Dodecahedron

## Real-space geometry



Figure 2.13: A regular dodecahedron.

## Syntax and parameters

## FormFactorDodecahedron(double edge)

with the parameter

- edge, length of one edge, $a$.


## Form factor, volume, horizontal section

$F$ : computed using the generic form factor of a polyhedron with inversion symmetry [4],

$$
V=\frac{1}{4}(15+7 \sqrt{5}) a^{3} \approx 7.663 a^{3}
$$

## Examples



Figure 2.14: Normalized intensity $|F|^{2} / V^{2}$, computed with $a=3.2 \mathrm{~nm}$, for three orientations of high symmetry: $x$ axis perpendicular to a polygonal face; vertex on the $x$ axis; edge in the $x y$ plane and perpendicular to the $x$ axis.


Figure 2.15: Normalized intensity $|F|^{2} / V^{2}$, computed with $a=3.2 \mathrm{~nm}$, for three orientations of decreasing symmetry: base pentagon in $x y$ plane and pointing in $x$ direction; rotated by $13^{\circ}$ around the $z$ axis; ditto, and tilted by $9^{\circ}$ around the $x$ axis.

## History

New in BornAgain-1.6, based on the generic form factor of the polyhedron [4].

### 2.9 Dot

## Real-space geometry

A point with no spatial extension, hence with a constant form factor. This is unphysical, but can be used e. g. to study structure factors without overlayed form factor oscillations. To get dimensions right, this form factor nonetheless takes an argument that specifies the radius of a FullSphere (Sec. 2.11) with same forward scattering power.

Syntax and parameters

## FormFactorDot(double radius)

with parameter

- radius, $R_{\text {scat }}$, radius of sphere with same $F(0)$.


## Form factor, volume, horizontal section

$$
\begin{aligned}
F & =\frac{4 \pi}{3} R_{\text {scat }}^{3} \\
V & =0 \\
S & =0
\end{aligned}
$$

## History

Up to BornAgain 1.16, we simply had $F=1$. The parameter $R_{\text {scat }}$ was introduced in release 1.17 to get dimensions right and to ensure correct intensity scales.

## See also

- FullSphere (Sec. 2.11),
- GaussianCoil (??).


### 2.10 EllipsoidalCylinder

## Real-space geometry



Perspective


Top view


Side view

Figure 2.16: A upright cylinder whose cross section is an ellipse.

## Syntax and parameters

```
FormFactorEllipsoidalCylinder(double radius_a, double radius_b,
    double height)
```

with the parameters

- radius_a, in $x$ direction, $R_{a}$,
- radius_b, in $y$ direction, $R_{b}$,
- height, $H$.


## Form factor, volume, horizontal section

Notation:

$$
\gamma:=\sqrt{\left(q_{x} R_{a}\right)^{2}+\left(q_{y} R_{b}\right)^{2}}
$$

Results:

$$
\begin{aligned}
& F=2 \pi R_{a} R_{b} H \exp \left(i \frac{q_{z} H}{2}\right) \operatorname{sinc}\left(\frac{q_{z} H}{2}\right) \frac{J_{1}(\gamma)}{\gamma}, \\
& V=\pi R_{a} R_{b} H \\
& S=R_{a} R_{b} .
\end{aligned}
$$

## Examples



Figure 2.17: Normalized intensity $|F|^{2} / V^{2}$, computed with $R_{a}=6.3 \mathrm{~nm}, R_{b}=4.2 \mathrm{~nm}$ and $H=3 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Agrees with the IsGISAXS form factor Ellipsoid [1, Eq. 2.41, wrongly labeled in Fig. 2.4] or Ellipsoidal Cylinder [2, Eq. 224].

## See also

- Cylinder (Sec. 2.7) if $R_{a}=R_{b}$.


### 2.11 FullSphere

## Real-space geometry



Perspective


Top view


Side view

Figure 2.18: A full sphere.

## Syntax and parameters

## FormFactorFullSphere(double radius)

with the parameter

- radius, $R$.


## Form factor, volume, horizontal section

Notation:

$$
q:=\sqrt{q_{x}^{2}+q_{y}^{2}+q_{z}^{2}}
$$

Note that this does not involve the sesquilinear product $\left|q_{x}\right|^{2}=q_{x}^{*} q_{x}$ but the plain product $q_{x} q_{x}$ of complex numbers (and analogous for $q_{y}, q_{z}$ ).

$$
\begin{aligned}
& F=\frac{4 \pi}{q^{3}} \exp \left(i q_{z} R\right)[\sin (q R)-q R \cos (q R)], \\
& V=\frac{4 \pi}{3} R^{3}, \\
& S=\pi R^{2} .
\end{aligned}
$$

## Example



Figure 2.19: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=3.9 \mathrm{~nm}$.

## History and Derivation

For real wavevectors, this form factor is well known; it goes back at least to Lord Rayleigh. In IsGISAXS, it has been implemented as form factor Full sphere [1, Eq. 2.36] [2, Eq. 226], allowing for complex wavevectors. Since it is not obvious that Rayleigh's formula also holds for complex $\mathbf{q}$, let us outline a derivation (if you know a more elegant one, we would like to hear).

If the origin is at the center of the sphere, then the form factor is

$$
\begin{equation*}
I(\mathbf{q}, R)=\int_{0}^{R} \mathrm{~d} r r^{2} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta \int_{0}^{2 \pi} \mathrm{~d} \varphi \mathrm{e}^{i \mathbf{q r}} \tag{2.5}
\end{equation*}
$$

with $\mathbf{q r}=q_{x} r \sin \theta \cos \varphi+q_{y} r \sin \theta \sin \varphi+q_{z} r \cos \theta$. For the integration over $\varphi$, see Sec. 2.7 on the form factor of a cylinder:

$$
\begin{equation*}
I(\mathbf{q}, R)=2 \pi \int_{0}^{R} \mathrm{~d} r r^{2} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta \exp \left(i q_{z} \cos \theta\right) J_{0}\left(q_{\|} r \sin \theta\right) \tag{2.6}
\end{equation*}
$$

with $q_{\|}=\sqrt{q_{x}^{2}+q_{y}^{2}}$. By symmetry, the imaginary part is zero, so that the exponential reduces to a cosine:

$$
\begin{equation*}
I(\mathbf{q}, R)=2 \pi \int_{0}^{R} \mathrm{~d} r r^{2} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta \cos \left(q_{z} \cos \theta\right) J_{0}\left(q_{\|} r \sin \theta\right) . \tag{2.7}
\end{equation*}
$$

Expand the outer cosine and the Bessel function:

$$
\begin{equation*}
I(\mathbf{q}, R)=2 \pi \int_{0}^{R} \mathrm{~d} r r^{2} \int_{0}^{\pi} \mathrm{d} \theta \sin \theta \sum_{j=0}^{\infty}(-)^{j} \frac{\left(q_{z} r \cos \theta\right)^{2 j}}{(2 j)!} \sum_{k=0}^{\infty}(-)^{k} \frac{\left(q_{\|} r \sin \theta\right)^{2 k}}{4^{k} k!^{2}} . \tag{2.8}
\end{equation*}
$$

Sort by powers of $r$, and integrate:

$$
\begin{equation*}
I(\mathbf{q}, R)=2 \pi \sum_{n=0}^{\infty}(-)^{n} \frac{R^{2 n+3}}{2 n+3} \sum_{k=0}^{n} \frac{q_{z}^{2 n-2 k}}{(2 n-2 k)!} \frac{q_{\|}^{2 k}}{4^{k} k!^{2}} \zeta(k, n) \tag{2.9}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta(k, n):=\int_{0}^{\pi} \mathrm{d} \theta \sin \theta(\cos \theta)^{2 n-2 k}(\sin \theta)^{2 k} \tag{2.10}
\end{equation*}
$$

This integral [8, no. 2.512.4] yields

$$
\begin{equation*}
\zeta(k, n)=\frac{2^{2 k+1}(2 n-2 k)!n!k!}{(2 n+1)!(n-k)!} \tag{2.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
I(\mathbf{q}, R)=4 \pi \sum_{n=0}^{\infty}(-)^{n} \frac{R^{2 n+3}}{(2 n+3)(2 n+1)!} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} q_{z}^{2 n-2 k} q_{\|}^{2 k} \tag{2.12}
\end{equation*}
$$

The inner sum happens to be the binomial expansion of $q^{2 n}=\left(q_{z}^{2}+q_{\|}\right)^{n}$. Therefore (2.12) coincides with the series expansion of

$$
\begin{equation*}
I(\mathbf{q}, R)=4 \pi q^{-3}(\sin (q R)-q R \cos (q R)) \tag{2.13}
\end{equation*}
$$

which is what we wanted to prove.

## See also

- Dot (Sec. 2.9) for $R \rightarrow 0$ (but keeping $V$ finite),
- Cylinder (Sec. 2.7),
- FullSpheroid (Sec. 2.12),
- TruncatedSphere (Sec. 2.20).


### 2.12 FullSpheroid

## Real-space geometry



Perspective


Top view


Side view

Figure 2.20: A full spheroid, generated by rotating an ellipse around the vertical axis.

## Syntax and parameters

## FormFactorFullSpheroid(double radius, double height)

with the parameters

- radius, $R$,
- height, $H$.


## Form factor, volume, horizontal section

Notation:

$$
h:=H / 2, \quad s:=\sqrt{\left(R q_{x}\right)^{2}+\left(R q_{y}\right)^{2}+\left(h q_{z}\right)^{2}}
$$

Results:

$$
\begin{aligned}
& F=4 \pi \exp \left(i q_{z} h\right) R^{2} h \frac{\sin (s)-s \cos (s)}{s^{3}}, \\
& V=\frac{4 \pi}{3} R^{2} h, \\
& S=\pi R^{2} .
\end{aligned}
$$

## Example



Figure 2.21: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=3.5 \mathrm{~nm}$ and $H=9.8 \mathrm{~nm}$, for four different tilt angles $\vartheta$ (rotation around the $y$ axis).

## History and Derivation

Replicates the Full spheroid of IsGISAXS [1, Eq. 2.37] [2, Eq. 227], except for wrong factors of 2 in their volume formula and form factor implementation. Up to BornAgain 1.16, our form factor computation followed IsGISAXS in using numeric integration in the $z$ coordinate.

Thanks to Matt Thompson (Australian National University) who pointed out that the form factor of any spheroid can be reduced to that of the regular sphere (Sec. 2.11) by rescaling $\mathbf{r q}=(M \mathbf{r})\left(M^{-1} \mathbf{q}\right)$. In the present case (with revolution axis along $z$ ), the transformation matrix is just $M=\operatorname{diag}(1 / R, 1 / R, 1 / h)$. The resulting simple expression for the form factor goes back at least to Guinier [9, p. 193].

## See also

- FullSphere (Sec. 2.11) if $H=2 R$,
- TruncatedSpheroid (Sec. 2.21) if cut horizontally.


### 2.13 HemiEllipsoid

## Real-space geometry



Perspective


Top view


Side view

Figure 2.22: An horizontally oriented ellipsoid, truncated at the central plane.

## Syntax and parameters

```
FormFactorHemiEllipsoid(double radius_a, double radius_b, double
    height)
```

with the parameters

- radius_a, in $x$ direction, $R_{a}$,
- radius_b, in $y$ direction, $R_{b}$,
- height, equal to radius in $z$ direction, $H$


## Form factor, volume, horizontal section

Notation:

$$
r_{a, z}:=R_{a} \sqrt{1-\left(\frac{z}{H}\right)^{2}}, \quad r_{b, z}:=R_{b} \sqrt{1-\left(\frac{z}{H}\right)^{2}}, \quad \gamma_{z}=\sqrt{\left(q_{x} r_{a, z}\right)^{2}+\left(q_{y} r_{b, z}\right)^{2}}
$$

Results:

$$
\begin{aligned}
& F=2 \pi \int_{0}^{H} \mathrm{~d} z r_{a, z} r_{b, z} \frac{J_{1}\left(\gamma_{z}\right)}{\gamma_{z}} \exp \left(i q_{z} z\right), \\
& V
\end{aligned}=\frac{2}{3} \pi R_{a} R_{b} H, \quad \begin{aligned}
& \\
& S=\pi R_{a} R_{b} .
\end{aligned}
$$

## Examples



Figure 2.23: Normalized intensity $|F|^{2} / V^{2}$, computed with $R_{a}=10 \mathrm{~nm}, R_{b}=3.8 \mathrm{~nm}$ and $H=3.2 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Agrees with the IsGISAXS form factor Anisotropic hemi-ellipsoid [1, Eq. 2.42, with wrong sign in the $z$-dependent phase factor] or Hemi-spheroid [2, Eq. 229].

## See also

- TruncatedSpheroid (Sec. 2.21) if $R_{a}=R_{b}$,
- TruncatedSphere (Sec. 2.20) if $R_{a}=R_{b}=H$.


### 2.14 Icosahedron

## Real-space geometry



Figure 2.24: A regular icosahedron.

## Syntax and parameters

## FormFactorIcosahedron(double edge)

with the parameter

- edge, length of one edge, $a$.


## Form factor, volume, horizontal section

$F$ : computed using the generic form factor of a polyhedron with inversion symmetry [4],

$$
V=\frac{5}{12}(3+\sqrt{5}) a^{3} \approx 2.182 a^{3}
$$

## Examples



Figure 2.25: Normalized intensity $|F|^{2} / V^{2}$, computed with $a=4.8 \mathrm{~nm}$, for three orientations of high symmetry: $x$ axis perpendicular to a polygonal face; vertex on the $x$ axis; edge in the $x y$ plane and perpendicular to the $x$ axis.


Figure 2.26: Normalized intensity $|F|^{2} / V^{2}$, computed with $a=4.8 \mathrm{~nm}$, for three orientations of decreasing symmetry: base pentagon in $x y$ plane and pointing in $x$ direction; rotated by $13^{\circ}$ around the $z$ axis; ditto, and tilted by $9^{\circ}$ around the $x$ axis.

## History

New in BornAgain-1.6, based on the generic form factor of the polyhedron [4].

### 2.15 Prism3 (triangular)

## Real-space geometry



Figure 2.27: A prism based on an equilateral triangle.

## Syntax and parameters

```
FormFactorPrism3(double length, double height)
```

with the parameters

- length of one base edge, $L$,
- height, $H$.


## Form factor, volume, horizontal section

$$
F=H \operatorname{sinc}\left(q_{z} \frac{H}{2}\right) \exp \left(-i q_{z} \frac{H}{2}\right) F_{\|}\left(\mathbf{q}_{\|}\right)
$$

with the form factor $F_{\|}$of the base triangle computed using the generic form factor of a planar polygon [4],

$$
\begin{aligned}
& V=\frac{\sqrt{3}}{4} H L^{2} \\
& S=\frac{\sqrt{3}}{4} L^{2}
\end{aligned}
$$

## Examples



Figure 2.28: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=13.8 \mathrm{~nm}$ and $H=3 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Has been validated against the Prism3 form factor of IsGISAXS [1, Eq. 2.29] [2, Eq. 219]. Note the different parameterization $L=2 R_{\text {IsGISAXS }}$. In FitGISAXS just called Prism [6]. In BornAgain-1.6, redefined to let the $x$ axis point along a symmetry axis (rotated by $30^{\circ}$ with respect to the previous version).

Reimplemented in BornAgain-1.6 using the generic form factor of a polygonal prism [4], to achieve numerical stability near the removable singularity at $q \rightarrow 0$.

## See also

- Tetrahedron (Sec. 2.18) (trigonal pyramid) if sides are not vertical.


### 2.16 Prism6 (hexagonal)

## Real-space geometry



Figure 2.29: A prism based on a regular hexagon.

## Syntax and parameters

```
FormFactorPrism6(double radius, double height)
```

with the parameters

- radius of the hexagonal base, $R$,
- height, $H$.

Form factor, volume, horizontal section

$$
F=H \operatorname{sinc}\left(q_{z} \frac{H}{2}\right) \exp \left(-i q_{z} \frac{H}{2}\right) F_{\|}\left(\mathbf{q}_{\|}\right)
$$

with the form factor $F_{\|}$of the base hexagon computed using the generic form factor of a planar polygon with two-fold symmetry $\left(S_{2}\right)[4]$,

$$
\begin{aligned}
& V=\frac{3 \sqrt{3}}{2} H R^{2}, \\
& S=\frac{3 \sqrt{3} R^{2}}{2}
\end{aligned}
$$

## Examples



Figure 2.30: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=5.7 \mathrm{~nm}$ and $H=3 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Has been validated against the Prism6 form factor of IsGISAXS [1, Eq. 2.31] [2, Eq. 221], which has different parametrization and lacks a factor $H$ in $F(\mathbf{q})$.

Reimplemented in BornAgain-1.5 using the generic form factor of a polygonal prism with symmetry $S_{2}$ [4], to achieve numerical stability near the removable singularity at $q \rightarrow 0$.

## See also

- Cone6 (Sec. 2.5) (frustum with hexagonal base) if sides are not vertical.


### 2.17 Pyramid (square-based)

## Real-space geometry



Figure 2.31: A truncated pyramid with a square base.

## Syntax and parameters

```
FormFactorPyramid(double length, double height, double alpha)
```

with the parameters

- length of one edge of the square base, $L$,
- height, $H$,
- alpha, angle between the base and a side face, $\alpha$,

They must fulfill

$$
H \leq \frac{\tan \alpha}{2} L
$$

Form factor, volume, horizontal section
$F:$ computed using the generic polyhedron form factor [4],

$$
\begin{aligned}
& V=\frac{1}{6} L^{3} \tan \alpha\left[1-\left(1-\frac{2 H}{L \tan \alpha}\right)^{3}\right], \\
& S=L^{2}
\end{aligned}
$$

## Examples



Figure 2.32: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=10 \mathrm{~nm}, H=4.2 \mathrm{~nm}$ and $\alpha=60^{\circ}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Corresponds to Pyramid form factor of IsGISAXS [1, Eq. 2.31] [2, Eq. 221], except for different parametrization $L=2 R_{\text {IsGISXAXS }}$ and a corrected sign.

Reimplemented in BornAgain-1.6 using the generic form factor of a polygonal prism [4], to achieve numerical stability near the removable singularity at $q \rightarrow 0$.

## See also

- AnisoPyramid (Sec. 2.1) if base is rectangular,
- Box (Sec. 2.2) if $\alpha=0$.


### 2.18 Tetrahedron

## Real-space geometry

Incorrectly named so, since it actually has five, not four surfaces. It's a frustum with trigonal base.


Figure 2.33: A truncated pyramid, based on an equilateral triangle.

## Syntax and parameters

```
FormFactorTetrahedron(double length, double height, double alpha)
```

with the parameters

- length of one edge of the equilateral triangular base, $L$,
- height, $H$,
- alpha, dihedral angle between the base and a side face, $\alpha$.

They must fulfill

$$
H \leq \frac{\tan \alpha}{2 \sqrt{3}} L
$$

The orthographic projection also shows the angle $\beta$ between the base and a side edge. It is related to the dihedral angle through $\tan \alpha=2 \tan \beta$.

## Form factor, volume, horizontal section

$F$ : computed using the generic polyhedron form factor [4],
$V=\frac{\tan (\alpha) L^{3}}{24}\left[1-\left(1-\frac{2 \sqrt{3} H}{L \tan (\alpha)}\right)^{3}\right]$,
$S=\frac{\sqrt{3}}{4} L^{2}$.

## Examples



Figure 2.34: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=12 \mathrm{~nm}, H=8 \mathrm{~nm}$, and $\alpha=75^{\circ}$, for four different angles $\omega$ of rotation around the $z$ axis. The low symmetry requires other angular ranges than used in most other figures.

## History

Previous implementations as Tetrahedron in IsGISAXS [1, Eq. 2.30] [2, Eq. 220], and as Truncated tetrahedron in FitGISAXS [6]. In BornAgain-1.6, redefined to let the $x$ axis lie in a mirror plane (rotated by $30^{\circ}$ with respect to the previous version).

Up to BornAgain-1.5, we computed the form factor by numeric integration, as in IsGISAXS. Since BornAgain-1.6 higher speed and accuracy are achieved by using the generic polyhedron form factor [4], with series expansions near singularities.

## See also

- Prism3 (Sec. 2.15) if $\alpha=0$.


### 2.19 TruncatedCube

## Real-space geometry



Figure 2.35: A cube whose eight vertices have been removed. The truncated part of each vertex is a trirectangular tetrahedron.

## Syntax and parameters

```
FormFactorTruncatedCube(double length, double removed_length)
```

with the parameters

- length of the full cube, $L$,
- removed_length, side length of the trirectangular tetrahedron removed from the cube's vertices, $t$.

They must fulfill

$$
t \leq L / 2
$$

## Form factor, volume, horizontal section

$F$ : computed using the generic form factor of a polyhedron with inversion symmetry [4],

$$
\begin{aligned}
& V=L^{3}-\frac{4}{3} t^{3} \\
& S=L^{2} .
\end{aligned}
$$

## Examples



Figure 2.36: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=25 \mathrm{~nm}, W=10 \mathrm{~nm}, H=8 \mathrm{~nm}$, and $d=5 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Until BornAgain-1.17 named TruncatedCube. Reimplemented in BornAgain-1.6 using the generic form factor of a polygonal prism [4]. Motivated by [10].

## See also

- Box (Sec. 2.2) if $t=0$,
- CantellatedCube (Sec. 2.3) if edges are also facetted.


### 2.20 TruncatedSphere

A spherical segment, obtained from a spherical ball by two parallel cuts.

## Real-space geometry



Perspective


Top view


Side view

Figure 2.37: A truncated sphere.

## Syntax and parameters

## FormFactorTruncatedSphere(double radius, double height, double dh)

with the parameters

- radius, $R$,
- height, $H$,
- top removal, $d h$.

They must fulfill

$$
\begin{aligned}
& 0<H \leq 2 R \\
& d h<H
\end{aligned}
$$

## Special cases

A spherical cap is obtained from a spherical ball by a single cut. This is covered by the following special parameterization of TruncatedSphere:

- Single cut at the bottom: $d h=0$.
- Single cut at the top: $H=2 R$.


## Form factor, volume, horizontal section

Notation:

$$
q_{\|}:=\sqrt{q_{x}^{2}+q_{y}^{2}}, \quad R_{z}:=\sqrt{R^{2}-z^{2}} .
$$

Results:

$$
\begin{aligned}
& F=2 \pi \exp \left[i q_{z}(H-R)\right] \int_{R-H}^{R-d h} \mathrm{~d} z R_{z}^{2} \frac{J_{1}\left(q_{\|} R_{z}\right)}{q_{\|} R_{z}} \exp \left(i q_{z} z\right) d z, \\
& V=\frac{\pi}{3}\left[3 R\left(H^{2}-d h^{2}\right)+d h^{3}-H^{3}\right], \\
& S=\left\{\begin{array}{ll}
\pi\left(2 R H-H^{2}\right), & H<R \\
\pi R^{2}, & H \geq R, d h<R \\
\pi\left(2 R d h-d h^{2}\right), & H \geq R, d h \geq R
\end{array} .\right.
\end{aligned}
$$

## Example



Figure 2.38: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=4.2 \mathrm{~nm}$ and $H=6.1 \mathrm{~nm}$, for four different tilt angles $\vartheta$ (rotation around the $y$ axis).

## History and Derivation

Agrees with the IsGISAXS form factor Sphere [1, Eq. 2.33] or Truncated sphere [2, Eq. 228]. Justification for complex $q$ in the same way as for the Cylinder form factor in Sec. 2.7.

## See also

- FullSphere (Sec. 2.11) if $d h=0$ and $H=2 R$,
- TruncatedSpheroid (Sec. 2.21) if vertically stretched or squeezed.


### 2.21 TruncatedSpheroid

## Real-space geometry



Perspective


Top view


Side view

Figure 2.39: A vertically oriented, horizontally truncated spheroid.

## Syntax and parameters

## FormFactorTruncatedSpheroid(double radius, double height, double height_flattening, double dh)

with the parameters

- radius, $R$,
- height, $H$,
- height_flattening, $f_{p}$,
- top removal, $d h$.

They must fulfill

$$
\begin{aligned}
& 0<\frac{H}{R} \leq 2 f_{p} \\
& d h<H
\end{aligned}
$$

## Form factor, volume, horizontal section

Notation:

$$
q_{\|}:=\sqrt{q_{x}^{2}+q_{y}^{2}}, \quad R_{z}:=\sqrt{R^{2}-z^{2} / f_{p}^{2}}
$$

Results:

$$
F=2 \pi \exp \left[i q_{z}\left(H-f_{p} R\right)\right] \int_{f_{p} R-H}^{f_{p} R-d h} \mathrm{~d} z R_{z}^{2} \frac{J_{1}\left(q_{\|} R_{z}\right)}{q_{\|} R_{z}} \exp \left(i q_{z} z\right)
$$

$$
\begin{aligned}
& V=\frac{\pi}{3 f_{p}^{2}}\left[3 R f_{p}\left(H^{2}-d h^{2}\right)+d h^{3}-H^{3}\right], \\
& S= \begin{cases}\pi\left(2 R f_{p} H-H^{2}\right) / f_{p}^{2}, & H<R f_{p} \\
\pi R^{2}, & H \geq R f_{p}, d h<R f_{p} . \\
\pi\left(2 R f_{p} d h-d h^{2}\right) / f_{p}^{2}, & H \geq R f_{p}, d h \geq R f_{p}\end{cases}
\end{aligned}
$$

## Example



Figure 2.40: Normalized intensity $|F|^{2} / V^{2}$, computed with $R=3.3 \mathrm{~nm}, H=9.8 \mathrm{~nm}$, and $f_{p}=1.8$, for four different tilt angles $\vartheta$ (rotation around the $y$ axis).

## History and Derivation

Agrees with the IsGISAXS form factor Sphere [1, Eq. 2.33] or TruncatedSpheroid [2, Eq. 228]. Justification for complex $q$ in the same way as for the Cylinder form factor in Sec. 2.7.

## See also

- FullSpheroid (Sec. 2.12) if $d h=0$ and $H=2 f_{p} R$,
- TruncatedSphere (Sec. 2.20) if $f_{p}=1$.


## 3 Ripples

Elongated particles, or ripples, are typically used to model lamellar cuts or man-made gratings.

As everywhere else in BornAgain only single scattering in the DWBA is simulated. This can be insufficient for periodic gratings that cause noticeable higher-order diffraction. To account for such dynamic scattering effects, it may be advisable to compute Bloch waves [11] or use finite elements to solve the exact wave equation [12]. For the foreseeable future, this is not in the scope of BornAgain.

We choose ripples to be elongated in $x$ direction. Different profiles in the $y z$ plane can be chosen: box, sinusoidal [Ripple1 (Sec. 3.2)], saw-tooth [Ripple2 (Sec. 3.3)].

For each of them, different profiles can also be chosen in the $x z$ plane, each of them characterized by a single parameter length, $L$. Their transverse form factor, along the elongation axis $x$, is

$$
f_{\|}\left(q_{x}\right)= \begin{cases}L \operatorname{sinc}\left(q_{x} L / 2\right) & \text { box }  \tag{3.1}\\ L \exp \left(-\left(q_{x} L\right)^{2} / 8\right) & \text { Gauss } \\ L /\left(1+\left(q_{x} L\right)^{2}\right) & \text { Lorentz }\end{cases}
$$

Constant factors have been chosen so that the forward scattering is the same in all three cases, $f_{\|}(0)=L$. The form factor is the Fourier transform of a correlation function. The box form factor with its characteristic sinc function is the Fourier transform of a rectangle function. A typical application could be a sample with tiny lateral extension that is fully illuminated by a coherent incoming plane wave. In most other situations, the correlation function is smooth rather than rectangular. The length parameter then stands for a correlation length. It is dominated either by a finite extension of the ripple, or by the coherence length of the scattering setup. The Gauss form factor is the Fourier transform of a Gaussian correlation function; the Lorentz form factor is the Fourier transform of an exponential in $|x|$.

## History

The Box variant of Ripple1 and Ripple2 replicates two form factors from FitGISAXS [6].

Full documentation and API support for all ripple form factors appeared in BornAgain-1.17. Before that release, the Lorentz factor $f_{\|}$had an extra factor of 2.5 in the form factor.

### 3.1 Bar (elongated box)

## Real-space geometry



Figure 3.1: A bar.

## Syntax and parameters

```
FormFactorBox(
    double length, double width, double height)
FormFactorBarGauss (
    double length, double width, double height)
FormFactorBarLorentz(
    double length, double width, double height)
```

with the parameters

- length of the base, $L$,
- width of the base, $W$,
- height, $H$.


## Form factor, volume, horizontal section

$$
F=f_{\|}\left(q_{x}\right) W H \exp \left(i q_{z} \frac{H}{2}\right) \operatorname{sinc}\left(q_{y} \frac{W}{2}\right) \operatorname{sinc}\left(q_{z} \frac{H}{2}\right)
$$

with $f_{\|}$as defined in (3.1),

$$
\begin{aligned}
V & =L W H \\
S & =L W
\end{aligned}
$$

### 3.2 Ripple1 (sinusoidal)

## Real-space geometry



Perspective


Top view


Side view

Figure 3.2: A ripple with a sinusoidal profile.

## Syntax and parameters

```
FormFactorRipple1Box(
    double length, double width, double height)
FormFactorRipple1Gauss(
    double length, double width, double height)
FormFactorRipple1Lorentz(
    double length, double width, double height)
```

with the parameters

- length, $L$,
- width, $W$,
- height, $H$.

The ripple is modelled as a surface

$$
Z(y)=\frac{H}{2}\left[1+\cos \frac{2 \pi y}{W}\right] .
$$

## Form factor

Using the inverse profile

$$
Y(z)=\frac{W}{2 \pi} \arccos \left(\frac{2 z}{H}-1\right)
$$

the form factor is computed by numeric integration:

$$
F=f_{\|}\left(q_{x}\right) \int_{0}^{H} \mathrm{~d} z \mathrm{e}^{i q_{z} z} 2 Y(z) \operatorname{sinc}\left(q_{y} Y(z)\right)
$$

with $f_{\|}$defined in (3.1). The integration is substantially accelerated by the substitution $u=\arccos (2 z / H-1)$.

## Volume, horizontal section

$$
\begin{aligned}
V & =\frac{L W H}{2}, \\
S & =L W
\end{aligned}
$$

## Examples



Figure 3.3: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=25 \mathrm{~nm}, W=10 \mathrm{~nm}$ and $H=8 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis.

## History

Agrees with the Ripple1 form factor of FitGISAXS [6].

### 3.3 Ripple2 (saw-tooth)

## Real-space geometry



Figure 3.4: A ripple with an asymmetric saw-tooth profile.

## Syntax and parameters

```
FormFactorRipple2Box(
    double length, double width, double height, asymmetry)
FormFactorRipple2Gauss(
    double length, double width, double height, asymmetry)
FormFactorRipple2Lorentz(
        double length, double width, double height, asymmetry)
```

with the parameters

- length, $L$,
- width, $W$,
- height, $H$.
- asymmetry, $d$.

They must fulfill

$$
|d| \leq W / 2
$$

## Form factor, volume, horizontal section

$$
F=f_{\|}\left(q_{x}\right) i \mathrm{e}^{-i q_{y} d}\left[\mathrm{e}^{i \alpha_{-} / 2} \operatorname{sinc}\left(\frac{\alpha_{+}}{2}\right)-\mathrm{e}^{i \alpha_{+} / 2} \operatorname{sinc}\left(\frac{\alpha_{-}}{2}\right)\right]
$$

with $f_{\|}$defined in (3.1).

$$
\begin{aligned}
& \alpha_{+}=H q_{z}+\frac{q_{y} W}{2}+q_{y} d, \quad \alpha_{-}=H q_{z}-\frac{q_{y} W}{2}+q_{y} d, \\
& V=\frac{L W H}{2} \\
& S=L W
\end{aligned}
$$

## Examples



Figure 3.5: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=25 \mathrm{~nm}, W=10 \mathrm{~nm}, H=8 \mathrm{~nm}$, and $d=5 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis. The low symmetry requires other angular ranges than used in most other figures.

## History

Agrees with the Ripple2 form factor of FitGISAXS [6].

## 4 Soft particles

A soft particle is characterized by a relative density $\rho(\mathbf{r})$ that varies smoothly from $\rho(0)=1$ to $\rho(\infty)=0$. The actual scattering length density $\rho_{\mathrm{s}}(\mathbf{r})$ is the product of a constant bulk value $\rho_{\mathrm{s}}$ with $\rho(\mathbf{r})$.

The form factor of a soft particle is defined as the Fourier transform of $\rho(\mathbf{r})$,

$$
\begin{equation*}
F(\mathbf{q})=\int \mathrm{d}^{3} r \mathrm{e}^{i \mathbf{q r}} \rho(\mathbf{r}) . \tag{4.1}
\end{equation*}
$$

The forward scattering power of the soft particle is the same as that of a hard particle with volume

$$
\begin{equation*}
V=F(0)=\int \mathrm{d}^{3} r \rho(\mathbf{r}) . \tag{4.2}
\end{equation*}
$$

### 4.1 Gaussian ellispoid

## Syntax and parameters

```
FormFactorGauss(double width, double height)
```

with the parameters

- width, $W$,
- height, $H$.

Form factor, volume, horizontal section

$$
\begin{aligned}
& F=\frac{L H}{q_{y}} \operatorname{sinc}\left(\frac{q_{x} L}{2}\right) i \mathrm{e}^{-i q_{y} d}\left[\mathrm{e}^{i \alpha_{-} / 2} \operatorname{sinc}\left(\frac{\alpha_{+}}{2}\right)-\mathrm{e}^{i \alpha_{+} / 2} \operatorname{sinc}\left(\frac{\alpha_{-}}{2}\right)\right] \\
& \alpha_{+}=H q_{z}+\frac{q_{y} W}{2}+q_{y} d, \quad \alpha_{-}=H q_{z}-\frac{q_{y} W}{2}+q_{y} d \\
& V=\frac{L W H}{2} \\
& S=L W
\end{aligned}
$$

## Examples



Figure 4.1: Normalized intensity $|F|^{2} / V^{2}$, computed with $L=25 \mathrm{~nm}, W=10 \mathrm{~nm}, H=8 \mathrm{~nm}$, and $d=5 \mathrm{~nm}$, for four different angles $\omega$ of rotation around the $z$ axis. The low symmetry requires other angular ranges than used in most other figures.

## Bibliography

[1] R. Lazzari, IsGISAXS. Version 2.6. http://www.insp.jussieu.fr/oxydes/ IsGISAXS/isgisaxs.htm (2006). 5, 11, 13, 16, 18, 20, 22, 27, 29, 32, 34, 38, 40, 42, 44, 48, 50
[2] G. Renaud, R. Lazzari and F. Leroy, Surf. Sci. Rep. 64, 255 (2009). 5, 11, 13, 16, $18,20,22,27,29,32,34,38,40,42,44,48,50$
[3] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, National Bureau of Standards (1964). 5, 22
[4] J. Wuttke, Form factor (Fourier shape transform) of polygon and polyhedron. [ArXiv:1703.00255]https://arxiv.org/abs/1703.00255 (2017). 5, 10, 14, 17, $18,19,20,23,24,35,36,37,38,39,40,41,42,43,44,45,46$
[5] G. Pospelov, W. Van Herck, J. Burle, J. M. Carmona Loaiza, C. Durniak, J. M. Fisher, M. Ganeva, D. Yurov and J. Wuttke, J. Appl. Cryst. 53, 262 (2020). 6
[6] D. Babonneau, FitGISAXS. Version 130531. http://www.pprime.fr/sites/ default/files/pictures/d1/FINANO/FitGISAXS_130531.zip (2013). 11, 38, 44, 51, 54, 56
[7] B. Croset, J. Appl. Cryst. 50, 1245 (2017). 14
[8] I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey and D. Zwillinger, Table of Integrals, Series, and Products, Academic Press: Amsterdam (72007). 30
[9] A. Guinier, Ann. Phys. (Paris) 11, 161 (1939). 32
[10] R. W. Hendricks, J. Schelten and W. Schmatz, Philos. Mag. 30, 819 (1974). 46
[11] R. Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich and R. Pynn, J. Appl. Cryst. 43, 455 (2010). 51
[12] V. Soltwisch, A. Fernández Herrero, M. Pflüger, A. Haase, J. Probst, C. Laubis, M. Krumrey and F. Scholze, J. Appl. Cryst. 50, 1524 (2017). 51

## Index

Absorption, 5
Anisotropic pyramid, 10
Ball, see Sphere
Bessel function, 5
Box, 12, 52
Cantellation
cube, 14
Cap, 47
Citation, 4
Coherence length, 51
Cone, see Frustum
Coordinates, 5
Correlation length, 51
CreateRotateX, 9
Cube, 12
cantellated, 14
truncated, 45
Cuboctahedron, 19
Cuboid, see Box
Cylinder, 21
ellipsoidal, 26
Density, 57
Distorted-wave Born approximation, 4
Dodecahedron, 23
Dot, 25
Ellipsoid
Gaussian, 58
truncated, 33
Ellipsoidal cylinder, 26
Expansion, see Cantellation
FormFactorAnisoPyramid, 10
FormFactorBarGauss, 52
FormFactorBarLorentz, 52
FormFactorBox, 12, 52
FormFactorCantellatedCube, 14
FormFactorCone, 15

FormFactorCone6, 17
FormFactorCuboctahedron, 19
FormFactorCylinder, 21
FormFactorDodecahedron, 23
FormFactorDot, 25
FormFactorEllipsoidalCylinder, 26
FormFactorFullSphere, 28
FormFactorFullSpheroid, 31
FormFactorGauss, 58
FormFactorHemiEllipsoid, 33
FormFactorIcosahedron, 35
FormFactorPrism3, 37
FormFactorPrism6, 39
FormFactorPyramid, 41
FormFactorRipple1Box, 53
FormFactorRipple1Gauss, 53
FormFactorRipple1Lorentz, 53
FormFactorRipple2Box, 55
FormFactorRipple2Gauss, 55
FormFactorRipple2Lorentz, 55
FormFactorTetrahedron, 43
FormFactorTruncatedCube, 45
FormFactorTruncatedSphere, 47
FormFactorTruncatedSpheroid, 49
Fourier transform, 57
Frustum
circular base, 15
hexagonal base, 17
reactangular base, 10
square base, 41
triangular base, 43
Full sphere, 28
Full spheroid, 31
Gaussian
soft particle, 58
transverse form factor, 51
Hemi ellipsoid, 33
Icosahedron, 35
$J_{1}$ (Bessel function), 5

Large particles
numeric difficulty, 6
Lorentzian
transverse form factor, 51
Mirror planes, 6
Monte-Carlo integration
for large particle form factor, 6

Numeric difficulty
form factor oscillation, 6
Octahedron
cantellated, 14
Orientation of particles, 9
Oscillation
from large particle form factor, 6
Particle
elongated, see Ripple
hard, 8-50
rapid form factor oscillation, 6
soft, 57-58
Platonic solid
cube, 12
dodecahedron, 23
icosahedron, 35
octahedron, 19
tetrahedron, 43
Plotting, 6
Polyhedron
generic algorithm, 5
Prism
hexagonal, 39
reactangular, see Box
triangular, 37
Pyramid
hexagonal, 17
rectangular, 10, 43
square, 41
$q$ (scattering vector), 5
Quadrature, 5
$\rho$ (density), 57
Refractive index, 6
Ripple, 51-56
saw-tooth, 55
sinusoidal, 53
Rotation of particles, 9
Saw-tooth ripple, 55
Scattering length density, 57
Scattering vector, 5
Segment
spherical, 47
Shape transform, 5
sinc (sinus cardinalis), 5
Singularity
in form factor computation, 5
Sinusoidal ripple, 53
Sphere, 28
cap, 47
segment, 47
Spheroid, 31
truncated, 49
Surface, 5
Symmetry, 6
Tetrahedron, 43
Tilt, see Rotation
Transform3D, 9
Transverse form factor, 51
Truncation, see also Facetting
cone, see Frustum
cube, 45
ellipsoid, 33
pyramid, see Frustum
sphere, 47
spheroid, 49
Volume, 5, 6
$z$ (surface normal coordinate), 5

