1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#!/usr/bin/env python3
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
Returns a sample with cylinders on a substrate,
forming a 2D lattice with different disorder rotated lattice
"""
m_vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
m_substrate = ba.RefractiveMaterial("Substrate", 6e-6, 2e-8)
m_particle = ba.RefractiveMaterial("Particle", 6e-4, 2e-8)
vacuum_layer = ba.Layer(m_vacuum)
substrate_layer = ba.Layer(m_substrate)
p_interparticle = \
ba.Interference2DLattice(ba.SquareLattice2D(25*nm, 0))
pdf = ba.Profile2DCauchy(48*nm, 16*nm, 0)
p_interparticle.setDecayFunction(pdf)
particle_layout = ba.ParticleLayout()
ff = ba.Cylinder(3*nm, 3*nm)
position = ba.R3(0, 0, 0)
cylinder = ba.Particle(m_particle, ff.clone())
cylinder.translate(position)
particle_layout.addParticle(cylinder)
particle_layout.setInterference(p_interparticle)
vacuum_layer.addLayout(particle_layout)
sample = ba.MultiLayer()
sample.addLayer(vacuum_layer)
sample.addLayer(substrate_layer)
return sample
def get_simulation(sample):
beam = ba.UnitBeam(0.1*nm, 0.2*deg)
detector = ba.SphericalDetector(bp.simargs['n'], 2*deg, 1*deg, 1*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
distr_1 = ba.DistributionGate(0, 240*deg)
simulation.addParameterDistribution("*/SquareLattice2D/Xi", distr_1, 3,
0)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=100)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|