1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
|
#!/usr/bin/env python3
"""
Spherical particles embedded in the middle of the layer on top of substrate.
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
def get_sample():
"""
Returns a sample with spherical particles in a layer
between vacuum and substrate.
"""
# Define materials
material_IntermLayer = ba.RefractiveMaterial("IntermLayer", 3.45e-06,
5.24e-09)
material_Particle = ba.RefractiveMaterial("Particle", 0, 0)
material_Substrate = ba.RefractiveMaterial("Substrate", 7.43e-06,
1.72e-07)
material_Vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Define form factors
ff = ba.Sphere(10.2*nm)
# Define particles
particle = ba.Particle(material_Particle, ff)
particle_position = R3(0, 0, -25.2*nm)
particle.translate(particle_position)
# Define particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle)
layout.setTotalParticleSurfaceDensity(0.01)
# Define layers
layer_1 = ba.Layer(material_Vacuum)
layer_2 = ba.Layer(material_IntermLayer, 30*nm)
layer_2.addLayout(layout)
layer_3 = ba.Layer(material_Substrate)
# Define sample
sample = ba.MultiLayer()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
sample.addLayer(layer_3)
return sample
def get_simulation(sample):
beam = ba.UnitBeam(0.15*nm, 0.15*deg)
detector = ba.SphericalDetector(bp.simargs['n'], 2*deg, 0, 1*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=200)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|