26 std::vector<std::vector<double>>
30 std::vector<std::vector<double>> result;
31 result.resize(samples.size());
32 for (
size_t i = 0, size = result.size(); i < size; ++i) {
33 const auto& sample_row = samples[i];
34 auto& result_row = result[i];
35 result_row.reserve(sample_row.size());
36 std::for_each(sample_row.begin(), sample_row.end(),
38 result_row.push_back(extractor(sample));
48 m_inc_angle(std::make_unique<
PointwiseAxis>(
"inc_angles", std::move(inc_angle))),
56 : m_wl(wl), m_inc_angle(inc_angle.clone()),
65 m_inc_angle(std::make_unique<
FixedBinAxis>(
"inc_angles", nbins, alpha_i_min, alpha_i_max)),
90 std::vector<SpecularSimulationElement> result;
93 for (
size_t k = 0, size_incs = incs[i].size(); k < size_incs; ++k) {
94 const double inc = incs[i][k];
95 for (
size_t j = 0, size_wls = wls[i].size(); j < size_wls; ++j) {
96 const double wl = wls[i][j];
120 std::unique_ptr<ScanResolution> resolution(
126 const std::vector<double>& rel_dev)
128 std::unique_ptr<ScanResolution> resolution(
136 std::unique_ptr<ScanResolution> resolution(
142 const std::vector<double>& std_dev)
144 std::unique_ptr<ScanResolution> resolution(
158 std::unique_ptr<ScanResolution> resolution(
164 const std::vector<double>& rel_dev)
166 std::unique_ptr<ScanResolution> resolution(
173 std::unique_ptr<ScanResolution> resolution(
179 const std::vector<double>& std_dev)
181 std::unique_ptr<ScanResolution> resolution(
189 throw std::runtime_error(
"Error in AngularSpecScan::footprint: given index exceeds the "
190 "number of simulation elements");
192 std::vector<double> result(n_elements, 1.0);
202 const size_t pos_out = start / (n_wl_samples * n_inc_samples);
203 size_t pos_inc = (start - pos_out * n_wl_samples * n_inc_samples) / n_wl_samples;
204 size_t pos_wl = (start - pos_inc * n_wl_samples);
205 int left =
static_cast<int>(n_elements);
207 for (
size_t i = pos_out; left > 0; ++i)
208 for (
size_t k = pos_inc; k < n_inc_samples && left > 0; ++k) {
210 const double angle = sample_values[i][k];
213 for (
size_t j = pos_wl; j < n_wl_samples && left > 0; ++j) {
232 std::vector<double> result(axis_size, 0.0);
240 for (
size_t i = 0; i < axis_size; ++i) {
241 double& current = result[i];
242 for (
size_t k = 0, size_incs = inc_weights[i].size(); k < size_incs; ++k) {
243 const double inc_weight = inc_weights[i][k];
244 for (
size_t j = 0, size_wls = wl_weights[i].size(); j < size_wls; ++j) {
245 current += sim_elements[elem_pos].getIntensity() * inc_weight * wl_weights[i][j];
255 std::stringstream result;
256 result <<
"\n" <<
pyfmt::indent() <<
"# Defining specular scan:\n";
265 result <<
pyfmt::indent() <<
"scan.setFootprintFactor(footprint)\n";
268 result <<
"\n" <<
pyfmt::indent() <<
"# Defining angular resolution\n";
270 result <<
pyfmt::indent() <<
"scan.setAngleResolution(resolution)\n";
273 result <<
"\n" <<
pyfmt::indent() <<
"# Defining wavelength resolution\n";
275 result <<
pyfmt::indent() <<
"scan.setWavelengthResolution(resolution)\n";
283 throw std::runtime_error(
284 "Error in AngularSpecScan::checkInitialization: wavelength shell be positive");
286 const std::vector<double> axis_values =
m_inc_angle->getBinCenters();
287 if (!std::is_sorted(axis_values.begin(), axis_values.end()))
288 throw std::runtime_error(
"Error in AngularSpecScan::checkInitialization: q-vector values "
289 "shall be sorted in ascending order.");
Declares AngularSpecScan class.
Defines class FixedBinAxis.
Defines class PointwiseAxis.
Defines functions in namespace pyfmt.
Defines classes representing ranged one-dimensional distributions.
Defines scan resolution class.
Declares the class SpecularSimulationElement.
Scan type with inclination angles as coordinate values and a unique wavelength.
void setAngleResolution(const ScanResolution &resolution)
Sets angle resolution values via ScanResolution object.
void setAbsoluteAngularResolution(const RangedDistribution &distr, double std_dev)
DistrOutput m_wl_res_cache
std::vector< std::vector< ParameterSample > > DistrOutput
std::vector< double > footprint(size_t i, size_t n_elements) const override
Returns footprint correction factor for a range of simulation elements of size n_elements and startin...
size_t numberOfSimulationElements() const override
Returns the number of simulation elements.
std::unique_ptr< IAxis > m_inc_angle
AngularSpecScan(double wl, std::vector< double > inc_angle)
virtual const IAxis * coordinateAxis() const override
Returns coordinate axis assigned to the data holder.
AngularSpecScan * clone() const override
std::unique_ptr< ScanResolution > m_inc_resolution
std::unique_ptr< ScanResolution > m_wl_resolution
std::vector< double > createIntensities(const std::vector< SpecularSimulationElement > &sim_elements) const override
Returns intensity vector corresponding to convolution of given simulation elements.
DistrOutput m_inc_res_cache
void setAbsoluteWavelengthResolution(const RangedDistribution &distr, double std_dev)
void setFootprintFactor(const IFootprintFactor *f_factor)
Sets footprint correction factor.
void setRelativeWavelengthResolution(const RangedDistribution &distr, double rel_dev)
void checkInitialization()
DistrOutput applyIncResolution() const
std::unique_ptr< IFootprintFactor > m_footprint
DistrOutput applyWlResolution() const
void setWavelengthResolution(const ScanResolution &resolution)
Sets wavelength resolution values via ScanResolution object.
std::string print() const override
Print scan definition in python format.
std::vector< SpecularSimulationElement > generateSimulationElements() const override
Generates simulation elements for specular simulations.
~AngularSpecScan() override
void setRelativeAngularResolution(const RangedDistribution &distr, double rel_dev)
Axis with fixed bin size.
Interface for one-dimensional axes.
virtual std::string pyString(const std::string &units, size_t offset) const =0
A parameter value with a weight, as obtained when sampling from a distribution.
Axis containing arbitrary (non-equidistant) coordinate values.
Interface for one-dimensional ranged distributions.
Container for reflectivity resolution data.
static ScanResolution * scanRelativeResolution(const RangedDistribution &distr, double stddev)
ScanResolution * clone() const override=0
static ScanResolution * scanAbsoluteResolution(const RangedDistribution &distr, double stddev)
Data stucture containing both input and output of a single image pixel for specular simulation.
std::vector< std::vector< double > > extractValues(std::vector< std::vector< ParameterSample >> samples, const std::function< double(const ParameterSample &)> extractor)
std::string printDouble(double input)
std::string indent(size_t width)
Returns a string of blanks with given width.