25 "frustum with circular base",
26 {{
"Radius",
"nm",
"radius of base", 0, +
INF, 0},
27 {
"Height",
"nm",
"height", 0, +
INF, 0},
28 {
"Alpha",
"rad",
"angle between base and side", 0.,
M_PI_2, 0}}},
30 m_radius(m_P[0]), m_height(m_P[1]), m_alpha(m_P[2])
33 if (!std::isfinite(m_cot_alpha) || m_cot_alpha < 0)
35 if (m_cot_alpha * m_height > m_radius) {
36 std::ostringstream ostr;
37 ostr <<
"FormFactorCone() -> Error in class initialization ";
38 ostr <<
"with parameters radius:" << m_radius;
39 ostr <<
" m_height:" << m_height;
40 ostr <<
" alpha[rad]:" << m_alpha <<
"\n\n";
41 ostr <<
"Check for 'height <= radius*tan(alpha)' failed.";
63 if (std::abs(
m_q.
mag()) < std::numeric_limits<double>::epsilon()) {
67 return M_PI * R * R * H;
70 return M_PI / 3. * (R * R * H + (R * R - R2 * R2) * (apex_height - H));
std::complex< double > complex_t
complex_t exp_I(complex_t z)
Returns exp(I*z), where I is the imaginary unit.
Defines class DoubleEllipse.
Defines many exception classes in namespace Exceptionss.
Defines classes RealIntegrator, ComplexIntegrator.
Defines M_PI and some more mathematical constants.
Defines namespace MathFunctions.
double mag() const
Returns magnitude of the vector.
T z() const
Returns z-component in cartesian coordinate system.
T y() const
Returns y-component in cartesian coordinate system.
T x() const
Returns x-component in cartesian coordinate system.
To integrate a complex function of a real variable.
complex_t integrate(const std::function< complex_t(double)> &f, double lmin, double lmax)
Pure virtual interface for rotations.
Class that contains upper and lower limits of the z-coordinate for the slicing of form factors.
double cot(double x)
cotangent function:
double Bessel_J1c(double x)
Bessel function Bessel_J1(x)/x.
const double radius(5 *Units::nanometer)