28 virtual double compute(
const std::vector<SimDataPair>& fit_objects,
size_t n_pars)
const = 0;
36 double compute(
const std::vector<SimDataPair>& fit_objects,
size_t n_pars)
const override;
39 std::unique_ptr<IChiSquaredModule> m_module;
46 double compute(
const std::vector<SimDataPair>& fit_objects,
size_t n_pars)
const override;
49 std::unique_ptr<ObjectiveMetric> m_module;
55 auto simulation = callback.build_simulation(params);
56 std::unique_ptr<Simulation> clone(simulation->clone());
62 FitObjective::FitObjective()
65 m_fit_status(std::make_unique<
FitStatus>(this))
69 FitObjective::~FitObjective() =
default;
81 m_fit_objects.emplace_back(builder, data, std::move(
uncertainties), weight);
86 run_simulations(params);
87 const double metric_value = m_metric_module->compute(m_fit_objects, params.size());
88 m_fit_status->update(params, metric_value);
92 std::vector<double> FitObjective::evaluate_residuals(
const Fit::Parameters& params)
98 std::transform(result.begin(), result.end(), sim_values.begin(), result.begin(),
99 [](
double lhs,
double rhs) { return lhs - rhs; });
103 size_t FitObjective::numberOfFitElements()
const
105 return std::accumulate(
106 m_fit_objects.begin(), m_fit_objects.end(), 0u,
107 [](
size_t acc,
auto& obj) ->
size_t { return acc + obj.numberOfFitElements(); });
172 return m_fit_objects[check_index(i_item)];
177 m_fit_status->initPrint(every_nth);
182 m_fit_status->addObserver(every_nth, observer);
187 fit_observer_t observer = [&](
const FitObjective& objective) { callback.update(objective); };
188 m_fit_status->addObserver(every_nth, observer);
191 bool FitObjective::isCompleted()
const
193 return m_fit_status->isCompleted();
198 return m_fit_status->iterationInfo();
203 return m_fit_status->minimizerResult();
208 m_fit_status->finalize(result);
211 unsigned FitObjective::fitObjectCount()
const
213 return static_cast<unsigned>(m_fit_objects.size());
216 void FitObjective::interruptFitting()
218 m_fit_status->setInterrupted();
221 bool FitObjective::isInterrupted()
const
223 return m_fit_status->isInterrupted();
226 bool FitObjective::isFirstIteration()
const
233 if (m_fit_status->isInterrupted())
234 throw std::runtime_error(
"Fitting was interrupted by the user.");
236 if (m_fit_objects.empty())
237 throw std::runtime_error(
"FitObjective::run_simulations() -> Error. "
238 "No simulation/data defined.");
240 for (
auto& obj : m_fit_objects)
241 obj.runSimulation(params);
246 std::cout <<
"Warning in FitObjective::setChiSquaredModule: setChiSquaredModule is deprecated "
247 "and will be removed in future versions. Please use "
248 "FitObjective::setObjectiveMetric instead."
251 std::unique_ptr<IChiSquaredModule> chi_module(module.
clone());
252 m_metric_module = std::make_unique<ChiModuleWrapper>(std::move(chi_module));
255 void FitObjective::setObjectiveMetric(std::unique_ptr<ObjectiveMetric> metric)
257 m_metric_module = std::make_unique<ObjectiveMetricWrapper>(std::move(metric));
260 void FitObjective::setObjectiveMetric(
const std::string& metric)
262 m_metric_module = std::make_unique<ObjectiveMetricWrapper>(
263 ObjectiveMetricUtils::createMetric(metric, ObjectiveMetricUtils::defaultNormName()));
266 void FitObjective::setObjectiveMetric(
const std::string& metric,
const std::string& norm)
269 std::make_unique<ObjectiveMetricWrapper>(ObjectiveMetricUtils::createMetric(metric, norm));
275 return dataPair(i_item).containsUncertainties();
282 for (
size_t i = 0, size = fitObjectCount(); i < size; ++i)
283 result = result &&
dataPair(i).containsUncertainties();
290 return ObjectiveMetricUtils::availableMetricOptions();
293 std::vector<double> FitObjective::composeArray(DataPairAccessor getter)
const
295 const size_t n_objs = m_fit_objects.size();
299 return (m_fit_objects[0].*getter)();
301 std::vector<double> result;
302 result.reserve(numberOfFitElements());
303 for (
auto& pair : m_fit_objects) {
304 std::vector<double> array = (pair.*getter)();
305 std::move(array.begin(), array.end(), std::back_inserter(result));
310 size_t FitObjective::check_index(
size_t index)
const
312 if (index >= m_fit_objects.size())
313 throw std::runtime_error(
"FitObjective::check_index() -> Index outside of range");
319 IMetricWrapper::~IMetricWrapper() =
default;
321 ChiModuleWrapper::ChiModuleWrapper(std::unique_ptr<IChiSquaredModule> module)
325 throw std::runtime_error(
"Error in ChiModuleWrapper: empty chi square module passed");
328 double ChiModuleWrapper::compute(
const std::vector<SimDataPair>& fit_objects,
size_t n_pars)
const
332 for (
auto& obj : fit_objects) {
333 const auto sim_array = obj.simulation_array();
334 const auto exp_array = obj.experimental_array();
335 const auto weights = obj.user_weights_array();
336 const size_t n_elements = sim_array.size();
337 for (
size_t i = 0; i < n_elements; ++i) {
338 double value = m_module->residual(sim_array[i], exp_array[i], weights[i]);
339 result += value * value;
341 n_points += n_elements;
344 int fnorm =
static_cast<int>(n_points) -
static_cast<int>(n_pars);
346 throw std::runtime_error(
"Error in ChiModuleWrapper: Normalization shall be positive");
348 return result / fnorm;
351 ObjectiveMetricWrapper::ObjectiveMetricWrapper(std::unique_ptr<ObjectiveMetric> module)
355 throw std::runtime_error(
"Error in ObjectiveMetricWrapper: empty objective metric passed");
358 double ObjectiveMetricWrapper::compute(
const std::vector<SimDataPair>& fit_objects,
size_t)
const
361 bool use_uncertainties =
true;
362 for (
auto& obj : fit_objects)
363 use_uncertainties = use_uncertainties && obj.containsUncertainties();
366 for (
auto& obj : fit_objects)
367 result += m_module->compute(obj, use_uncertainties);
Defines class ChiSquaredModule.
Defines class FitObjective.
Defines ObjectiveMetric utilities and corresponding namespace.
Defines ObjectiveMetric classes.
Defines family of PyFittingCallbacks classes.
Defines class Simulation.
Metric wrapper for back-compaptibility with old scripts.
Holds vector of SimDataPairs (experimental data and simulation results) for use in fitting.
SimulationResult uncertaintyData(size_t i_item=0) const
Returns experimental data uncertainties in the form of SimulationResult.
void addSimulationAndData(simulation_builder_t builder, const OutputData< double > &data, std::unique_ptr< OutputData< double >> uncertainties, double weight=1.0)
Constructs simulation/data pair for later fit.
bool allPairsHaveUncertainties() const
Returns true if all the data pairs in FitObjective instance contain uncertainties.
SimulationResult relativeDifference(size_t i_item=0) const
Returns relative difference between simulation and experimental data in the form of SimulationResult.
void finalize(const Fit::MinimizerResult &result)
Should be explicitely called on last iteration to notify all observers.
void initPlot(int every_nth, PyObserverCallback &callback)
Initializes observer callback to be called on every_nth fit iteration.
std::vector< double > uncertainties() const
Returns one-dimensional array representing merged data uncertainties.
SimulationResult experimentalData(size_t i_item=0) const
Returns experimental data in the form of SimulationResult.
static std::string availableMetricOptions()
Returns available metrics and norms.
bool containsUncertainties(size_t i_item) const
Returns true if the specified DataPair element contains uncertainties.
SimulationResult simulationResult(size_t i_item=0) const
Returns simulation result in the form of SimulationResult.
void initPrint(int every_nth)
Initializes printing to standard output on every_nth fit iteration.
std::vector< double > weights_array() const
Returns one-dimensional array representing merged user weights.
std::vector< double > experimental_array() const
Returns one dimensional array representing merged experimental data.
SimulationResult absoluteDifference(size_t i_item=0) const
Returns absolute value of difference between simulation and experimental data in the form of Simulati...
const SimDataPair & dataPair(size_t i_item=0) const
Returns a reference to i-th SimDataPair.
std::vector< double > simulation_array() const
Returns one dimensional array representing merged simulated intensities data.
Contains status of the fitting (running, interupted etc) and all intermediate information which has t...
Result of minimization round.
A collection of fit parameters.
Interface residual calculations.
virtual IChiSquaredModule * clone() const =0
clone method
Stores fit iteration info to track fit flow from various observers.
unsigned iterationCount() const
Returns current number of minimizer iterations.
Implementation of metric with standard deviation , where is the simulated intensity.
Builds simulation object using a Python callable.
Observer for FitObjective based on Python callable.
Holds pair of simulation/experimental data to fit.
std::vector< double > experimental_array() const
Returns the flattened experimental data cut to the ROI area.
SimulationResult absoluteDifference() const
Returns the absolute difference between simulated and experimental data cut to the ROI area.
std::vector< double > user_weights_array() const
Returns a flat array of user weights cut to the ROI area.
std::vector< double > uncertainties_array() const
Returns the flattened experimental uncertainties cut to the ROI area.
std::vector< double > simulation_array() const
Returns the flattened simulated intensities cut to the ROI area.
SimulationResult uncertainties() const
Returns the data uncertainties cut to the ROI area If no uncertainties present, returns zero-filled S...
SimulationResult experimentalData() const
Returns the experimental data cut to the ROI area.
SimulationResult relativeDifference() const
Returns the relative difference between simulated and experimental data cut to the ROI area.
SimulationResult simulationResult() const
Returns the result of last computed simulation.
Wrapper around OutputData<double> that also provides unit conversions.