15 #ifndef BORNAGAIN_CORE_AGGREGATE_INTERFERENCEFUNCTIONRADIALPARACRYSTAL_H 
   16 #define BORNAGAIN_CORE_AGGREGATE_INTERFERENCEFUNCTIONRADIALPARACRYSTAL_H 
   38     double domainSize()
 const { 
return m_domain_size; }
 
   40     complex_t FTPDF(
double qpar) 
const;
 
   44     double peakDistance()
 const { 
return m_peak_distance; }
 
   46     double dampingLength()
 const { 
return m_damping_length; }
 
   48     std::vector<const INode*> 
getChildren() const override final;
 
   50     double randomSample()
 const { 
return mP_pdf->createSampler()->randomSample(); }
 
   53     double iff_without_dw(
const kvector_t q) 
const override final;
 
   54     void init_parameters();
 
   56     double m_peak_distance;  
 
   57     double m_damping_length; 
 
   59     std::unique_ptr<IFTDistribution1D> mP_pdf;
 
   60     bool m_use_damping_length;
 
Defines complex_t, and a few elementary functions.
 
Defines interface class IFTDistribution1D, and children thereof.
 
Defines and implements the interface class IInterferenceFunction.
 
Interface for a one-dimensional distribution, with normalization adjusted so that the Fourier transfo...
 
Pure virtual base class of interference functions.
 
Visitor interface to visit ISample objects.
 
Interference function of radial paracrystal.
 
InterferenceFunctionRadialParaCrystal(double peak_distance, double damping_length)
Constructor of interference function of radial paracrystal.
 
std::vector< const INode * > getChildren() const override final
Returns a vector of children (const).
 
InterferenceFunctionRadialParaCrystal * clone() const override final
Returns a clone of this ISample object.
 
void setDomainSize(double size)
Sets domain size (finite size corrections).
 
void accept(INodeVisitor *visitor) const override final
Calls the INodeVisitor's visit method.
 
void setKappa(double kappa)
Sets size spacing coupling parameter of the Size Spacing Correlation Approximation.
 
void setProbabilityDistribution(const IFTDistribution1D &pdf)
Sets one-dimensional probability distribution.