BornAgain  1.19.0
Simulate and fit neutron and x-ray scattering at grazing incidence
FTDistribution2DComponents.cpp
Go to the documentation of this file.
1 // ************************************************************************************************
2 //
3 // BornAgain: simulate and fit reflection and scattering
4 //
5 //! @file Sample/SampleBuilderEngine/FTDistribution2DComponents.cpp
6 //! @brief Implements sample components for complex sample builders.
7 //!
8 //! @homepage http://www.bornagainproject.org
9 //! @license GNU General Public License v3 or higher (see COPYING)
10 //! @copyright Forschungszentrum Jülich GmbH 2018
11 //! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
12 //
13 // ************************************************************************************************
14 
16 
17 // ************************************************************************************************
19 // ************************************************************************************************
20 {
21  add("FTDistribution2DCauchy", new FTDistribution2DCauchy(0.5, 1.0, 0));
22  add("FTDistribution2DGauss", new FTDistribution2DGauss(0.5, 1.0, 0));
23  add("FTDistribution2DGate", new FTDistribution2DGate(0.5, 1.0, 0));
24  add("FTDistribution2DCone", new FTDistribution2DCone(0.5, 1.0, 0));
25  add("FTDistribution2DVoigt", new FTDistribution2DVoigt(0.5, 1.0, 0, 0.2));
26 }
Defines sample components for complex sample builders.
Two-dimensional Cauchy distribution in Fourier space; corresponds to a normalized exp(-r) in real spa...
Two-dimensional cone distribution in Fourier space; corresponds to 1-r if r<1 (and 0 otherwise) in re...
Two-dimensional gate distribution in Fourier space; corresponds to normalized constant if r<1 (and 0 ...
Two-dimensional Gauss distribution in Fourier space; corresponds to normalized exp(-r^2/2) in real sp...
Two-dimensional Voigt distribution in Fourier space; corresponds to eta*Gauss + (1-eta)*Cauchy.
void add(const std::string &key, IFTDistribution2D *item)
Definition: IRegistry.h:54