24 double relativeDifference(
double a, 
double b)
 
   26     constexpr 
double eps = std::numeric_limits<double>::epsilon();
 
   27     const double avg_abs = (std::abs(a) + std::abs(b)) / 2.0;
 
   29     if (std::abs(a - b) <= eps * avg_abs)
 
   31     return std::abs(a - b) / avg_abs;
 
   54         result.
add(plan.fitParameter());
 
   63     std::vector<double> result;
 
   65         result.push_back(plan.expectedValue());
 
   77         throw std::runtime_error(
"FunctionTestPlan::valuesAsExpected() -> Error. Sizes differ.");
 
   80     std::ostringstream text;
 
   82         double diff = relativeDifference(values[index], plan.expectedValue());
 
   85         if (diff > plan.tolerance())
 
   88         text << plan.fitParameter().name() << 
" found:" << values[index]
 
   89              << 
" expected:" << plan.expectedValue() << 
" diff:" << diff << 
" " 
   90              << (diff_ok ? 
"OK" : 
"FAILED") << 
"\n";
 
   97     std::cout << text.str();
 
Defines class MinimizerTestPlan.
 
Defines class Parameters.
 
std::vector< double > expectedValues() const
Return vector of expected parameter values.
 
MinimizerTestPlan(const std::string &name)
 
bool valuesAsExpected(const std::vector< double > &values) const
Returns true if given values coincide with expected fit parameter values.
 
mumufit::Parameters parameters() const
Returns fit parameters which will be used as initial one for the minimization.
 
virtual ~MinimizerTestPlan()
 
std::vector< ParameterPlan > m_parameter_plan
 
void addParameter(const mumufit::Parameter ¶m, double expected_value, double tolerance=0.01)
 
Defines initial settings of single fit parameter and the final value which has to be found in the cou...
 
A fittable parameter with value, error, step, and limits.
 
A collection of fit parameters.
 
void add(const Parameter &par)
 
QString const  & name(EShape k)
 
The multi-library, multi-algorithm fit wrapper library.