BornAgain  1.19.79
Open-source research software to simulate and fit neutron and x-ray reflectometry and grazing-incidence small-angle scattering
TMVA::Types Class Reference

Description

Definition at line 73 of file Types.h.

Public Types

enum  EAnalysisType {
  kClassification = 0 , kRegression , kMulticlass , kNoAnalysisType ,
  kMaxAnalysisType
}
 
enum  EBoostStage {
  kBoostProcBegin =0 , kBeforeTraining , kBeforeBoosting , kAfterBoosting ,
  kBoostProcEnd
}
 
enum  EMVA {
  kVariable = 0 , kCuts , kLikelihood , kPDERS ,
  kHMatrix , kFisher , kKNN , kCFMlpANN ,
  kTMlpANN , kBDT , kDT , kRuleFit ,
  kSVM , kMLP , kBayesClassifier , kFDA ,
  kBoost , kPDEFoam , kLD , kPlugins ,
  kCategory , kDNN , kPyRandomForest , kPyAdaBoost ,
  kPyGTB , kPyKeras , kC50 , kRSNNS ,
  kRSVM , kRXGB , kMaxMethod
}
 
enum  ESBType {
  kSignal = 0 , kBackground , kSBBoth , kMaxSBType ,
  kTrueType
}
 
enum  ETreeType {
  kTraining = 0 , kTesting , kMaxTreeType , kValidation ,
  kTrainingOriginal
}
 
enum  EVariableTransform {
  kIdentity = 0 , kDecorrelated , kNormalized , kPCA ,
  kRearranged , kGauss , kUniform , kMaxVariableTransform
}
 

Member Enumeration Documentation

◆ EAnalysisType

Enumerator
kClassification 
kRegression 
kMulticlass 
kNoAnalysisType 
kMaxAnalysisType 

Definition at line 125 of file Types.h.

125  {
126  kClassification = 0,
127  kRegression,
128  kMulticlass,
131  };
@ kMulticlass
Definition: Types.h:128
@ kNoAnalysisType
Definition: Types.h:129
@ kClassification
Definition: Types.h:126
@ kMaxAnalysisType
Definition: Types.h:130
@ kRegression
Definition: Types.h:127

◆ EBoostStage

Enumerator
kBoostProcBegin 
kBeforeTraining 
kBeforeBoosting 
kAfterBoosting 
kBoostProcEnd 

Definition at line 149 of file Types.h.

149  {
150  kBoostProcBegin=0,
155  };
@ kBoostProcBegin
Definition: Types.h:150
@ kBeforeBoosting
Definition: Types.h:152
@ kAfterBoosting
Definition: Types.h:153
@ kBoostProcEnd
Definition: Types.h:154
@ kBeforeTraining
Definition: Types.h:151

◆ EMVA

Enumerator
kVariable 
kCuts 
kLikelihood 
kPDERS 
kHMatrix 
kFisher 
kKNN 
kCFMlpANN 
kTMlpANN 
kBDT 
kDT 
kRuleFit 
kSVM 
kMLP 
kBayesClassifier 
kFDA 
kBoost 
kPDEFoam 
kLD 
kPlugins 
kCategory 
kDNN 
kPyRandomForest 
kPyAdaBoost 
kPyGTB 
kPyKeras 
kC50 
kRSNNS 
kRSVM 
kRXGB 
kMaxMethod 

Definition at line 78 of file Types.h.

78  {
79  kVariable = 0,
80  kCuts ,
81  kLikelihood ,
82  kPDERS ,
83  kHMatrix ,
84  kFisher ,
85  kKNN ,
86  kCFMlpANN ,
87  kTMlpANN ,
88  kBDT ,
89  kDT ,
90  kRuleFit ,
91  kSVM ,
92  kMLP ,
94  kFDA ,
95  kBoost ,
96  kPDEFoam ,
97  kLD ,
98  kPlugins ,
99  kCategory ,
100  kDNN ,
102  kPyAdaBoost ,
103  kPyGTB ,
104  kPyKeras ,
105  kC50 ,
106  kRSNNS ,
107  kRSVM ,
108  kRXGB ,
109  kMaxMethod
110  };
@ kFisher
Definition: Types.h:84
@ kCategory
Definition: Types.h:99
@ kPyRandomForest
Definition: Types.h:101
@ kPyKeras
Definition: Types.h:104
@ kTMlpANN
Definition: Types.h:87
@ kFDA
Definition: Types.h:94
@ kBDT
Definition: Types.h:88
@ kPDERS
Definition: Types.h:82
@ kRSNNS
Definition: Types.h:106
@ kPDEFoam
Definition: Types.h:96
@ kLikelihood
Definition: Types.h:81
@ kCuts
Definition: Types.h:80
@ kPyAdaBoost
Definition: Types.h:102
@ kVariable
Definition: Types.h:79
@ kBayesClassifier
Definition: Types.h:93
@ kHMatrix
Definition: Types.h:83
@ kBoost
Definition: Types.h:95
@ kSVM
Definition: Types.h:91
@ kRuleFit
Definition: Types.h:90
@ kCFMlpANN
Definition: Types.h:86
@ kMaxMethod
Definition: Types.h:109
@ kPyGTB
Definition: Types.h:103
@ kKNN
Definition: Types.h:85
@ kMLP
Definition: Types.h:92
@ kPlugins
Definition: Types.h:98

◆ ESBType

Enumerator
kSignal 
kBackground 
kSBBoth 
kMaxSBType 
kTrueType 

Definition at line 133 of file Types.h.

133  {
134  kSignal = 0, // Never change this number - it is elsewhere assumed to be zero !
135  kBackground,
136  kSBBoth,
137  kMaxSBType,
138  kTrueType
139  };
@ kSignal
Definition: Types.h:134
@ kTrueType
Definition: Types.h:138
@ kBackground
Definition: Types.h:135
@ kSBBoth
Definition: Types.h:136
@ kMaxSBType
Definition: Types.h:137

◆ ETreeType

Enumerator
kTraining 
kTesting 
kMaxTreeType 
kValidation 
kTrainingOriginal 

Definition at line 141 of file Types.h.

141  {
142  kTraining = 0,
143  kTesting,
144  kMaxTreeType, // also used as temporary storage for trees not yet assigned for testing;training...
145  kValidation, // these are placeholders... currently not used, but could be moved "forward" if
146  kTrainingOriginal // ever needed
147  };
@ kMaxTreeType
Definition: Types.h:144
@ kTrainingOriginal
Definition: Types.h:146
@ kTraining
Definition: Types.h:142
@ kValidation
Definition: Types.h:145
@ kTesting
Definition: Types.h:143

◆ EVariableTransform

Enumerator
kIdentity 
kDecorrelated 
kNormalized 
kPCA 
kRearranged 
kGauss 
kUniform 
kMaxVariableTransform 

Definition at line 113 of file Types.h.

113  {
114  kIdentity = 0,
116  kNormalized,
117  kPCA,
118  kRearranged,
119  kGauss,
120  kUniform,
122  };
@ kUniform
Definition: Types.h:120
@ kNormalized
Definition: Types.h:116
@ kRearranged
Definition: Types.h:118
@ kGauss
Definition: Types.h:119
@ kIdentity
Definition: Types.h:114
@ kMaxVariableTransform
Definition: Types.h:121
@ kDecorrelated
Definition: Types.h:115

The documentation for this class was generated from the following file: