### Plotting with axes in different units

In this example we demonstrate how to plot intensity data with detector axes expressed in different units. It serves as a supporting example to the Accessing simulation results tutorial.

• The standard Cylinders in DWBA sample is used to setup the simulation.
• When the simulation is completed, the Simulation::result() method is used to get a SimulationResult object.
• Depending on an additional parameter IDetector2D.NBINS, IDetector2D.DEGREES, IDetector2D.QYQZ, it will be plotted with axes defined either in millimeters (default units of RectangularDetector), detector bins, degrees or in $Q$-space.
• Note that the given parameter only affects min/max values of histogram axes (there is no rebinning involved).
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91  #!/usr/bin/env python3 """ In this example we demonstrate how to plot simulation results with axes in different units (nbins, mm, degs and QyQz). """ import bornagain as ba from bornagain import angstrom, ba_plot as bp, deg, nm from matplotlib import pyplot as plt from matplotlib import rcParams def get_sample(): from bornagain import std_samples return std_samples.cylinders() def get_simulation(sample): beam = ba.Beam(1e9, 1*angstrom, 0.2*deg) n = 500 detector_distance = 2000.0 # in mm width = 170 # nm height = width detector = ba.RectangularDetector(n, width, n, height) detector.setPerpendicularToSampleX(detector_distance, width/2., 0) simulation = ba.ScatteringSimulation(beam, sample, detector) return simulation def plot(result): """ Plots simulation results for different detectors. """ # set plotting parameters rcParams['image.aspect'] = 'auto' plt.figure(figsize=(10, 10)) plt.subplot(2, 2, 1) # default units for rectangular detector are millimeters bp.plot_simres(result, xlabel=r'$x \;({\rm mm})$', ylabel=r'$y \;({\rm mm})$', zlabel=None, with_cb=False) plt.title("Default: real-space detector coordinates", loc='left') plt.subplot(2, 2, 2) bp.plot_simres(result, units=ba.Coords_NBINS, xlabel=r'$X_{\rm bin}$', ylabel=r'$Y_{\rm bin}$', zlabel=None, with_cb=False) plt.title("Bin indices", loc='left') plt.subplot(2, 2, 3) bp.plot_simres(result, units=ba.Coords_DEGREES, xlabel=r'$\varphi_{\rm f} \;(^{\circ})$', ylabel=r'$\alpha_{\rm f} \;(^{\circ})$', zlabel=None, with_cb=False) plt.title("Deflection angles", loc='left') plt.subplot(2, 2, 4) bp.plot_simres(result, units=ba.Coords_QSPACE, xlabel=r'$Q_{y} \;(1/{\rm nm})$', ylabel=r'$Q_{z} \;(1/{\rm nm})$', zlabel=None, with_cb=False) plt.title("Q space", loc='left') plt.subplots_adjust( left=0.07, right=0.97, top=0.9, bottom=0.1, hspace=0.35, wspace=0., ) if __name__ == '__main__': simulation = get_simulation(get_sample()) result = simulation.simulate() plot(result) bp.show_or_export() 
auto/Examples/scatter2d/AxesInDifferentUnits.py