Beam divergence

By default, the incident beam is perfectly monochromatic and collimated. Here we show how to set finite distributions of wavelengths and of incident angles.

  • The wavelength follows a log-normal distribution around the mean value of 0.1 nm with a scale parameter equal to $0.1$.
  • Both incident angles follow a Gaussian distribution around the average values $\alpha_i = 0.2 ^{\circ}$ and $\varphi_i = 0^{\circ}$, respectively and $\sigma_{\alpha_i} = \sigma_{\varphi_i} = 0.1^{\circ}$.

The DWBA simulation is shown for a standard sample model:

  • The sample is composed of monodisperse cylinders deposited on a substrate.
  • The cylinders are dilute and distributed at random, hence there is no interference between scattered waves.

Real-space model

Intensity image

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
#!/usr/bin/env python3
"""
Cylinder form factor in DWBA with beam divergence
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm


def get_sample():
    from bornagain import std_samples
    return std_samples.cylinders()


def get_simulation(sample):
    beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
    detector = ba.SphericalDetector(100, 2*deg, 1*deg, 1*deg)
    simulation = ba.ScatteringSimulation(beam, sample, detector)
    distr_1 = ba.DistributionLogNormal(0.1*nm, 0.1, 5, 2)
    simulation.addParameterDistribution(
        ba.ParameterDistribution.BeamWavelength, distr_1)
    distr_2 = ba.DistributionGaussian(0.2*deg, 0.1*deg, 5, 2)
    simulation.addParameterDistribution(
        ba.ParameterDistribution.BeamInclinationAngle, distr_2)
    distr_3 = ba.DistributionGaussian(0, 0.1*deg, 5, 2)
    simulation.addParameterDistribution(
        ba.ParameterDistribution.BeamAzimuthalAngle, distr_3)
    return simulation


if __name__ == '__main__':
    sample = get_sample()
    simulation = get_simulation(sample)
    result = simulation.simulate()
    bp.plot_simulation_result(result)
auto/Examples/scatter2d/BeamDivergence.py