BornAgain  1.19.79
Open-source research software to simulate and fit neutron and x-ray reflectometry and grazing-incidence small-angle scattering
GaussSphere Class Reference

Description

The form factor of a Gaussian sphere.

Definition at line 23 of file Gauss.h.

Inheritance diagram for GaussSphere:
[legend]
Collaboration diagram for GaussSphere:
[legend]

Public Member Functions

 GaussSphere (double mean_radius)
 
 GaussSphere (std::vector< double > P)
 
virtual double bottomZ (const IRotation *rotation) const
 
virtual bool canSliceAnalytically (const IRotation *rot) const
 Default implementation only allows rotations along z-axis. More...
 
void checkNodeArgs () const
 Raises exception if a parameter value is invalid. More...
 
std::string className () const final
 Returns the class name, to be hard-coded in each leaf class that inherits from INode. More...
 
GaussSphereclone () const override
 Returns a clone of this ISampleNode object. More...
 
std::vector< const Material * > containedMaterials () const
 Returns set of unique materials contained in this ISampleNode. More...
 
complex_t formfactor_at_bottom (C3 q) const override
 
virtual SpinMatrix formfactor_pol (C3 q) const
 Returns scattering amplitude for complex scattering wavevector q=k_i-k_f in case of matrix interactions. Default implementation calls formfactor_at_bottom(q) and multiplies with the unit matrix. More...
 
bool isMagnetic () const
 Returns true if there is any magnetic material in this ISampleNode. More...
 
virtual const Materialmaterial () const
 Returns nullptr, unless overwritten to return a specific material. More...
 
double meanRadius () const
 
virtual std::vector< const INode * > nodeChildren () const
 Returns all children. More...
 
std::vector< const INode * > nodeOffspring () const
 Returns all descendants. More...
 
std::vector< ParaMetaparDefs () const final
 Returns the parameter definitions, to be hard-coded in each leaf class. More...
 
virtual std::string pythonConstructor () const
 Creates the Python constructor of this class (or derived classes) More...
 
double radialExtension () const override
 Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations. More...
 
std::string shapeName () const
 
virtual complex_t theFF (const WavevectorInfo &wavevectors) const
 
virtual SpinMatrix thePolFF (const WavevectorInfo &wavevectors) const
 
virtual double topZ (const IRotation *rotation) const
 
virtual void transferToCPP ()
 Used for Python overriding of clone (see swig/tweaks.py) More...
 
virtual double volume () const
 

Protected Attributes

std::vector< double > m_P
 
std::unique_ptr< IShape3Dm_shape3D
 IShape3D object, used to retrieve vertices (which may be approximate in the case of round shapes). For soft particles, this will be a hard mean shape. More...
 

Private Member Functions

void initialize ()
 

Private Attributes

const double & m_mean_radius
 

Constructor & Destructor Documentation

◆ GaussSphere() [1/2]

GaussSphere::GaussSphere ( std::vector< double >  P)

Definition at line 20 of file Gauss.cpp.

21  : IFormFactor(P)
22  , m_mean_radius(m_P[0])
23 {
24  checkNodeArgs();
25 }
const double & m_mean_radius
Definition: Gauss.h:43
void checkNodeArgs() const
Raises exception if a parameter value is invalid.
Definition: INode.cpp:27
std::vector< double > m_P
Definition: INode.h:63

References INode::checkNodeArgs().

Referenced by clone().

Here is the call graph for this function:

◆ GaussSphere() [2/2]

GaussSphere::GaussSphere ( double  mean_radius)

Definition at line 27 of file Gauss.cpp.

28  : GaussSphere(std::vector<double>{mean_radius})
29 {
30 }
GaussSphere(std::vector< double > P)
Definition: Gauss.cpp:20

Member Function Documentation

◆ bottomZ()

double IFormFactor::bottomZ ( const IRotation rotation) const
virtualinherited

Reimplemented in Sphere, IFormFactorPrism, and IFormFactorPolyhedron.

Definition at line 50 of file IFormFactor.cpp.

51 {
52  if (!m_shape3D)
53  throw std::runtime_error("Bug: Form factor has no m_shape3D, cannot compute bottom z");
54  return PolyhedralUtil::BottomZ(m_shape3D->vertices(), rotation);
55 }
std::unique_ptr< IShape3D > m_shape3D
IShape3D object, used to retrieve vertices (which may be approximate in the case of round shapes)....
Definition: IFormFactor.h:74
double BottomZ(const std::vector< R3 > &vertices, const IRotation *rotation)
Calculates the z-coordinate of the lowest vertex after rotation.

References PolyhedralUtil::BottomZ(), and IFormFactor::m_shape3D.

Here is the call graph for this function:

◆ canSliceAnalytically()

bool IFormFactor::canSliceAnalytically ( const IRotation rot) const
virtualinherited

Default implementation only allows rotations along z-axis.

Reimplemented in Sphere.

Definition at line 64 of file IFormFactor.cpp.

65 {
66  return !rotation || rotation->zInvariant();
67 }

References IRotation::zInvariant().

Here is the call graph for this function:

◆ checkNodeArgs()

void INode::checkNodeArgs ( ) const
inherited

Raises exception if a parameter value is invalid.

Definition at line 27 of file INode.cpp.

28 {
29  size_t nP = m_P.size();
30  if (parDefs().size() != nP) {
31  std::cerr << "BUG in class " << className() << std::endl;
32  std::cerr << "#m_P = " << nP << std::endl;
33  std::cerr << "#PDf = " << parDefs().size() << std::endl;
34  for (const ParaMeta& pm : parDefs())
35  std::cerr << " PDf: " << pm.name << std::endl;
36  ASSERT(0);
37  }
38  ASSERT(parDefs().size() == nP);
39  for (size_t i = 0; i < nP; ++i) {
40  const ParaMeta pm = parDefs()[i];
41 
43  if (pm.vMin == -INF) {
44  ASSERT(pm.vMax == +INF);
45  // nothing to do
46  } else if (pm.vMax == +INF) {
47  ASSERT(pm.vMin == 0);
48  limits = RealLimits::nonnegative();
49  } else {
50  limits = RealLimits::limited(pm.vMin, pm.vMax);
51  }
52  limits.check(pm.name, m_P[i]);
53  }
54 }
#define ASSERT(condition)
Definition: Assert.h:45
const double INF
Definition: INode.h:26
virtual std::vector< ParaMeta > parDefs() const
Returns the parameter definitions, to be hard-coded in each leaf class.
Definition: INode.h:51
virtual std::string className() const =0
Returns the class name, to be hard-coded in each leaf class that inherits from INode.
Limits for a real fit parameter.
Definition: RealLimits.h:24
static RealLimits limitless()
Creates an object without bounds (default)
Definition: RealLimits.cpp:139
void check(const std::string &name, double value) const
Throws if value is outside limits. Parameter 'name' is for exception message.
Definition: RealLimits.cpp:170
static RealLimits nonnegative()
Creates an object which can have only positive values with 0. included.
Definition: RealLimits.cpp:124
static RealLimits limited(double left_bound_value, double right_bound_value)
Creates an object bounded from the left and right.
Definition: RealLimits.cpp:134
Metadata of one model parameter.
Definition: INode.h:29
double vMin
Definition: INode.h:33
double vMax
Definition: INode.h:34
std::string name
Definition: INode.h:30

References ASSERT, RealLimits::check(), INode::className(), INF, RealLimits::limited(), RealLimits::limitless(), INode::m_P, ParaMeta::name, RealLimits::nonnegative(), INode::parDefs(), ParaMeta::vMax, and ParaMeta::vMin.

Referenced by BarGauss::BarGauss(), BarLorentz::BarLorentz(), Bipyramid4::Bipyramid4(), Box::Box(), CantellatedCube::CantellatedCube(), Cone::Cone(), ConstantBackground::ConstantBackground(), CosineRippleBox::CosineRippleBox(), CosineRippleGauss::CosineRippleGauss(), CosineRippleLorentz::CosineRippleLorentz(), Cylinder::Cylinder(), DistributionCosine::DistributionCosine(), DistributionGate::DistributionGate(), DistributionGaussian::DistributionGaussian(), DistributionLogNormal::DistributionLogNormal(), DistributionLorentz::DistributionLorentz(), DistributionTrapezoid::DistributionTrapezoid(), Dodecahedron::Dodecahedron(), EllipsoidalCylinder::EllipsoidalCylinder(), FootprintGauss::FootprintGauss(), FootprintSquare::FootprintSquare(), FuzzySphere::FuzzySphere(), GaussSphere(), HemiEllipsoid::HemiEllipsoid(), HollowSphere::HollowSphere(), HorizontalCylinder::HorizontalCylinder(), Icosahedron::Icosahedron(), LongBoxGauss::LongBoxGauss(), LongBoxLorentz::LongBoxLorentz(), PlatonicOctahedron::PlatonicOctahedron(), PlatonicTetrahedron::PlatonicTetrahedron(), Prism3::Prism3(), Prism6::Prism6(), Profile1DCauchy::Profile1DCauchy(), Profile1DCosine::Profile1DCosine(), Profile1DGate::Profile1DGate(), Profile1DGauss::Profile1DGauss(), Profile1DTriangle::Profile1DTriangle(), Profile1DVoigt::Profile1DVoigt(), Profile2DCauchy::Profile2DCauchy(), Profile2DCone::Profile2DCone(), Profile2DGate::Profile2DGate(), Profile2DGauss::Profile2DGauss(), Profile2DVoigt::Profile2DVoigt(), Pyramid2::Pyramid2(), Pyramid3::Pyramid3(), Pyramid4::Pyramid4(), Pyramid6::Pyramid6(), RotationEuler::RotationEuler(), RotationX::RotationX(), RotationY::RotationY(), RotationZ::RotationZ(), SawtoothRippleBox::SawtoothRippleBox(), SawtoothRippleGauss::SawtoothRippleGauss(), SawtoothRippleLorentz::SawtoothRippleLorentz(), Sphere::Sphere(), Spheroid::Spheroid(), TruncatedCube::TruncatedCube(), TruncatedSphere::TruncatedSphere(), and TruncatedSpheroid::TruncatedSpheroid().

Here is the call graph for this function:

◆ className()

std::string GaussSphere::className ( ) const
inlinefinalvirtual

Returns the class name, to be hard-coded in each leaf class that inherits from INode.

Implements INode.

Definition at line 29 of file Gauss.h.

29 { return "GaussSphere"; }

◆ clone()

GaussSphere* GaussSphere::clone ( ) const
inlineoverridevirtual

Returns a clone of this ISampleNode object.

Implements IFormFactor.

Definition at line 28 of file Gauss.h.

28 { return new GaussSphere(m_mean_radius); }

References GaussSphere(), and m_mean_radius.

Here is the call graph for this function:

◆ containedMaterials()

std::vector< const Material * > ISampleNode::containedMaterials ( ) const
inherited

Returns set of unique materials contained in this ISampleNode.

Definition at line 25 of file ISampleNode.cpp.

26 {
27  std::vector<const Material*> result;
28  if (const Material* p_material = material())
29  result.push_back(p_material);
30  for (const auto* child : nodeChildren()) {
31  if (const auto* sample = dynamic_cast<const ISampleNode*>(child)) {
32  for (const Material* p_material : sample->containedMaterials())
33  result.push_back(p_material);
34  }
35  }
36  return result;
37 }
virtual std::vector< const INode * > nodeChildren() const
Returns all children.
Definition: INode.cpp:56
Abstract base class for sample components and properties related to scattering.
Definition: ISampleNode.h:27
virtual const Material * material() const
Returns nullptr, unless overwritten to return a specific material.
Definition: ISampleNode.h:36
A wrapper for underlying material implementation.
Definition: Material.h:35

References ISampleNode::material(), and INode::nodeChildren().

Referenced by SampleUtils::Multilayer::ContainsCompatibleMaterials(), SampleToPython::initLabels(), and ISampleNode::isMagnetic().

Here is the call graph for this function:

◆ formfactor_at_bottom()

complex_t GaussSphere::formfactor_at_bottom ( C3  q) const
overridevirtual

Implements IFormFactor.

Definition at line 32 of file Gauss.cpp.

33 {
34  const double max_ql = std::sqrt(-4 * M_PI * std::log(std::numeric_limits<double>::min()) / 3);
35 
36  double qzh = q.z().real() * m_mean_radius;
37  if (std::abs(qzh) > max_ql)
38  return 0.0;
39  double qxr = q.x().real() * m_mean_radius;
40  if (std::abs(qxr) > max_ql)
41  return 0.0;
42  double qyr = q.y().real() * m_mean_radius;
43  if (std::abs(qyr) > max_ql)
44  return 0.0;
45 
46  return pow(m_mean_radius, 3) * std::exp(-(qxr * qxr + qyr * qyr + qzh * qzh) / 4.0 / M_PI);
47 }
#define M_PI
Definition: Constants.h:44

References m_mean_radius, and M_PI.

◆ formfactor_pol()

SpinMatrix IFormFactor::formfactor_pol ( C3  q) const
virtualinherited

Returns scattering amplitude for complex scattering wavevector q=k_i-k_f in case of matrix interactions. Default implementation calls formfactor_at_bottom(q) and multiplies with the unit matrix.

Definition at line 78 of file IFormFactor.cpp.

79 {
81 }
virtual complex_t formfactor_at_bottom(C3 q) const =0
static SpinMatrix One()
Definition: SpinMatrix.cpp:36

References IFormFactor::formfactor_at_bottom(), and SpinMatrix::One().

Referenced by IFormFactor::thePolFF().

Here is the call graph for this function:

◆ initialize()

void GaussSphere::initialize ( )
private

◆ isMagnetic()

bool ISampleNode::isMagnetic ( ) const
inherited

Returns true if there is any magnetic material in this ISampleNode.

Definition at line 39 of file ISampleNode.cpp.

40 {
41  const auto materials = containedMaterials();
42  return std::any_of(materials.cbegin(), materials.cend(),
43  [](const Material* mat) { return mat->isMagneticMaterial(); });
44 }
std::vector< const Material * > containedMaterials() const
Returns set of unique materials contained in this ISampleNode.
Definition: ISampleNode.cpp:25

References ISampleNode::containedMaterials().

Referenced by reSample::make().

Here is the call graph for this function:

◆ material()

virtual const Material* ISampleNode::material ( ) const
inlinevirtualinherited

Returns nullptr, unless overwritten to return a specific material.

Reimplemented in Particle, and Layer.

Definition at line 36 of file ISampleNode.h.

36 { return nullptr; }

Referenced by ISampleNode::containedMaterials().

◆ meanRadius()

double GaussSphere::meanRadius ( ) const
inline

Definition at line 36 of file Gauss.h.

36 { return m_mean_radius; }

References m_mean_radius.

◆ nodeChildren()

◆ nodeOffspring()

std::vector< const INode * > INode::nodeOffspring ( ) const
inherited

Returns all descendants.

Definition at line 61 of file INode.cpp.

62 {
63  std::vector<const INode*> result;
64  result.push_back(this);
65  for (const auto* child : nodeChildren()) {
66  for (const auto* p : child->nodeOffspring())
67  result.push_back(p);
68  }
69  return result;
70 }

References INode::nodeChildren().

Here is the call graph for this function:

◆ parDefs()

std::vector<ParaMeta> GaussSphere::parDefs ( ) const
inlinefinalvirtual

Returns the parameter definitions, to be hard-coded in each leaf class.

Reimplemented from INode.

Definition at line 31 of file Gauss.h.

32  {
33  return {{"MeanRadius", "nm", "para_tooltip", 0, +INF, 0}};
34  }

References INF.

◆ pythonConstructor()

std::string IFormFactor::pythonConstructor ( ) const
virtualinherited

Creates the Python constructor of this class (or derived classes)

Definition at line 69 of file IFormFactor.cpp.

70 {
71  std::vector<std::pair<double, std::string>> arguments;
72  for (size_t i = 0; i < parDefs().size(); i++)
73  arguments.emplace_back(m_P[i], parDefs()[i].unit);
74 
75  return Py::Fmt::printFunction(className(), arguments);
76 }
std::string printFunction(const std::string &name, const std::vector< std::pair< double, std::string >> &arguments)
Print a function in the form "<name>(<arguments>)". arguments will be processed by printArguments(),...
Definition: PyFmt.cpp:168

References INode::className(), INode::m_P, INode::parDefs(), and Py::Fmt::printFunction().

Here is the call graph for this function:

◆ radialExtension()

double GaussSphere::radialExtension ( ) const
inlineoverridevirtual

Returns the (approximate in some cases) radial size of the particle of this form factor's shape. This is used for SSCA calculations.

Implements IFormFactor.

Definition at line 38 of file Gauss.h.

38 { return m_mean_radius; }

References m_mean_radius.

◆ shapeName()

std::string IFormFactor::shapeName ( ) const
inherited

Definition at line 33 of file IFormFactor.cpp.

34 {
35  if (className().substr(0, 10) == "FormFactor")
36  return className().substr(10);
37  return className();
38 }

References INode::className().

Here is the call graph for this function:

◆ theFF()

complex_t IFormFactor::theFF ( const WavevectorInfo wavevectors) const
virtualinherited

Definition at line 40 of file IFormFactor.cpp.

41 {
42  return formfactor_at_bottom(wavevectors.getQ());
43 }
C3 getQ() const

References IFormFactor::formfactor_at_bottom(), and WavevectorInfo::getQ().

Here is the call graph for this function:

◆ thePolFF()

SpinMatrix IFormFactor::thePolFF ( const WavevectorInfo wavevectors) const
virtualinherited

Definition at line 45 of file IFormFactor.cpp.

46 {
47  return formfactor_pol(wavevectors.getQ());
48 }
virtual SpinMatrix formfactor_pol(C3 q) const
Returns scattering amplitude for complex scattering wavevector q=k_i-k_f in case of matrix interactio...
Definition: IFormFactor.cpp:78

References IFormFactor::formfactor_pol(), and WavevectorInfo::getQ().

Here is the call graph for this function:

◆ topZ()

double IFormFactor::topZ ( const IRotation rotation) const
virtualinherited

Reimplemented in Sphere, IFormFactorPrism, and IFormFactorPolyhedron.

Definition at line 57 of file IFormFactor.cpp.

58 {
59  if (!m_shape3D)
60  throw std::runtime_error("Bug: Form factor has no m_shape3D, cannot compute top z");
61  return PolyhedralUtil::TopZ(m_shape3D->vertices(), rotation);
62 }
double TopZ(const std::vector< R3 > &vertices, const IRotation *rotation)
Calculates the z-coordinate of the highest vertex after rotation.

References IFormFactor::m_shape3D, and PolyhedralUtil::TopZ().

Here is the call graph for this function:

◆ transferToCPP()

virtual void ICloneable::transferToCPP ( )
inlinevirtualinherited

Used for Python overriding of clone (see swig/tweaks.py)

Definition at line 32 of file ICloneable.h.

◆ volume()

double IFormFactor::volume ( ) const
virtualinherited

Reimplemented in IFormFactorPrism, IFormFactorPolyhedron, and Box.

Definition at line 83 of file IFormFactor.cpp.

84 {
85  return std::abs(formfactor_at_bottom(C3()));
86 }

References IFormFactor::formfactor_at_bottom().

Referenced by Compute::Slicing::createParticleInSlice().

Here is the call graph for this function:

Member Data Documentation

◆ m_mean_radius

const double& GaussSphere::m_mean_radius
private

Definition at line 43 of file Gauss.h.

Referenced by clone(), formfactor_at_bottom(), meanRadius(), and radialExtension().

◆ m_P

◆ m_shape3D


The documentation for this class was generated from the following files: