BornAgain  1.19.79
Open-source research software to simulate and fit neutron and x-ray reflectometry and grazing-incidence small-angle scattering
IRotation Class Referenceabstract

Description

Abstract base class for rotations.

Definition at line 29 of file Rotations.h.

Inheritance diagram for IRotation:
[legend]
Collaboration diagram for IRotation:
[legend]

Public Member Functions

 IRotation (const std::vector< double > &PValues)
 
void checkNodeArgs () const
 Raises exception if a parameter value is invalid. More...
 
virtual std::string className () const =0
 Returns the class name, to be hard-coded in each leaf class that inherits from INode. More...
 
IRotationclone () const override=0
 
virtual IRotationcreateInverse () const =0
 Returns a new IRotation object that is the current object's inverse. More...
 
virtual bool isIdentity () const
 Returns true if rotation matrix is identity matrix (no rotations) More...
 
virtual std::vector< const INode * > nodeChildren () const
 Returns all children. More...
 
std::vector< const INode * > nodeOffspring () const
 Returns all descendants. More...
 
virtual std::vector< ParaMetaparDefs () const
 Returns the parameter definitions, to be hard-coded in each leaf class. More...
 
virtual RotMatrix rotMatrix () const =0
 Returns transformation. More...
 
virtual void transferToCPP ()
 Used for Python overriding of clone (see swig/tweaks.py) More...
 
R3 transformed (const R3 &v) const
 
bool zInvariant () const
 

Static Public Member Functions

static IRotationcreateRotation (const RotMatrix &transform)
 

Protected Attributes

std::vector< double > m_P
 

Constructor & Destructor Documentation

◆ IRotation()

IRotation::IRotation ( const std::vector< double > &  PValues)

Definition at line 23 of file Rotations.cpp.

24  : INode(PValues)
25 {
26 }
INode()=default

Member Function Documentation

◆ checkNodeArgs()

void INode::checkNodeArgs ( ) const
inherited

Raises exception if a parameter value is invalid.

Definition at line 27 of file INode.cpp.

28 {
29  size_t nP = m_P.size();
30  if (parDefs().size() != nP) {
31  std::cerr << "BUG in class " << className() << std::endl;
32  std::cerr << "#m_P = " << nP << std::endl;
33  std::cerr << "#PDf = " << parDefs().size() << std::endl;
34  for (const ParaMeta& pm : parDefs())
35  std::cerr << " PDf: " << pm.name << std::endl;
36  ASSERT(0);
37  }
38  ASSERT(parDefs().size() == nP);
39  for (size_t i = 0; i < nP; ++i) {
40  const ParaMeta pm = parDefs()[i];
41 
43  if (pm.vMin == -INF) {
44  ASSERT(pm.vMax == +INF);
45  // nothing to do
46  } else if (pm.vMax == +INF) {
47  ASSERT(pm.vMin == 0);
48  limits = RealLimits::nonnegative();
49  } else {
50  limits = RealLimits::limited(pm.vMin, pm.vMax);
51  }
52  limits.check(pm.name, m_P[i]);
53  }
54 }
#define ASSERT(condition)
Definition: Assert.h:45
const double INF
Definition: INode.h:26
virtual std::vector< ParaMeta > parDefs() const
Returns the parameter definitions, to be hard-coded in each leaf class.
Definition: INode.h:51
std::vector< double > m_P
Definition: INode.h:63
virtual std::string className() const =0
Returns the class name, to be hard-coded in each leaf class that inherits from INode.
Limits for a real fit parameter.
Definition: RealLimits.h:24
static RealLimits limitless()
Creates an object without bounds (default)
Definition: RealLimits.cpp:139
void check(const std::string &name, double value) const
Throws if value is outside limits. Parameter 'name' is for exception message.
Definition: RealLimits.cpp:170
static RealLimits nonnegative()
Creates an object which can have only positive values with 0. included.
Definition: RealLimits.cpp:124
static RealLimits limited(double left_bound_value, double right_bound_value)
Creates an object bounded from the left and right.
Definition: RealLimits.cpp:134
Metadata of one model parameter.
Definition: INode.h:29
double vMin
Definition: INode.h:33
double vMax
Definition: INode.h:34
std::string name
Definition: INode.h:30

References ASSERT, RealLimits::check(), INode::className(), INF, RealLimits::limited(), RealLimits::limitless(), INode::m_P, ParaMeta::name, RealLimits::nonnegative(), INode::parDefs(), ParaMeta::vMax, and ParaMeta::vMin.

Referenced by BarGauss::BarGauss(), BarLorentz::BarLorentz(), Bipyramid4::Bipyramid4(), Box::Box(), CantellatedCube::CantellatedCube(), Cone::Cone(), ConstantBackground::ConstantBackground(), CosineRippleBox::CosineRippleBox(), CosineRippleGauss::CosineRippleGauss(), CosineRippleLorentz::CosineRippleLorentz(), Cylinder::Cylinder(), DistributionCosine::DistributionCosine(), DistributionGate::DistributionGate(), DistributionGaussian::DistributionGaussian(), DistributionLogNormal::DistributionLogNormal(), DistributionLorentz::DistributionLorentz(), DistributionTrapezoid::DistributionTrapezoid(), Dodecahedron::Dodecahedron(), EllipsoidalCylinder::EllipsoidalCylinder(), FootprintGauss::FootprintGauss(), FootprintSquare::FootprintSquare(), FuzzySphere::FuzzySphere(), GaussSphere::GaussSphere(), HemiEllipsoid::HemiEllipsoid(), HollowSphere::HollowSphere(), HorizontalCylinder::HorizontalCylinder(), Icosahedron::Icosahedron(), LongBoxGauss::LongBoxGauss(), LongBoxLorentz::LongBoxLorentz(), PlatonicOctahedron::PlatonicOctahedron(), PlatonicTetrahedron::PlatonicTetrahedron(), Prism3::Prism3(), Prism6::Prism6(), Profile1DCauchy::Profile1DCauchy(), Profile1DCosine::Profile1DCosine(), Profile1DGate::Profile1DGate(), Profile1DGauss::Profile1DGauss(), Profile1DTriangle::Profile1DTriangle(), Profile1DVoigt::Profile1DVoigt(), Profile2DCauchy::Profile2DCauchy(), Profile2DCone::Profile2DCone(), Profile2DGate::Profile2DGate(), Profile2DGauss::Profile2DGauss(), Profile2DVoigt::Profile2DVoigt(), Pyramid2::Pyramid2(), Pyramid3::Pyramid3(), Pyramid4::Pyramid4(), Pyramid6::Pyramid6(), RotationEuler::RotationEuler(), RotationX::RotationX(), RotationY::RotationY(), RotationZ::RotationZ(), SawtoothRippleBox::SawtoothRippleBox(), SawtoothRippleGauss::SawtoothRippleGauss(), SawtoothRippleLorentz::SawtoothRippleLorentz(), Sphere::Sphere(), Spheroid::Spheroid(), TruncatedCube::TruncatedCube(), TruncatedSphere::TruncatedSphere(), and TruncatedSpheroid::TruncatedSpheroid().

Here is the call graph for this function:

◆ className()

virtual std::string INode::className ( ) const
pure virtualinherited

Returns the class name, to be hard-coded in each leaf class that inherits from INode.

Implemented in Particle, SphericalDetector, SpecularSimulation, ScatteringSimulation, OffspecSimulation, DepthProbeSimulation, PoissonBackground, ConstantBackground, GaussSphere, FuzzySphere, RotationEuler, RotationZ, RotationY, RotationX, IdentityRotation, ParticleCoreShell, ParticleComposition, MesoCrystal, Crystal, MultiLayer, Layer, Lattice3D, HexagonalLattice2D, SquareLattice2D, BasicLattice2D, LayerRoughness, LayerInterface, TruncatedSpheroid, TruncatedSphere, TruncatedCube, Spheroid, Sphere, SawtoothRippleLorentz, SawtoothRippleGauss, SawtoothRippleBox, Pyramid6, Pyramid4, Pyramid3, Pyramid2, Prism6, Prism3, PlatonicTetrahedron, PlatonicOctahedron, LongBoxLorentz, LongBoxGauss, Icosahedron, HorizontalCylinder, HollowSphere, HemiEllipsoid, EllipsoidalCylinder, Dodecahedron, Cylinder, CosineRippleLorentz, CosineRippleGauss, CosineRippleBox, Cone, CantellatedCube, Box, Bipyramid4, BarLorentz, BarGauss, Profile2DVoigt, Profile2DCone, Profile2DGate, Profile2DGauss, Profile2DCauchy, Profile1DVoigt, Profile1DCosine, Profile1DTriangle, Profile1DGate, Profile1DGauss, Profile1DCauchy, MisesGaussPeakShape, MisesFisherGaussPeakShape, LorentzFisherPeakShape, GaussFisherPeakShape, IsotropicLorentzPeakShape, IsotropicGaussPeakShape, ParticleLayout, InterferenceTwin, InterferenceRadialParaCrystal, InterferenceNone, InterferenceHardDisk, InterferenceFinite3DLattice, InterferenceFinite2DLattice, Interference3DLattice, Interference2DSuperLattice, Interference2DParaCrystal, Interference2DLattice, Interference1DLattice, DistributionTrapezoid, DistributionCosine, DistributionLogNormal, DistributionGaussian, DistributionLorentz, DistributionGate, ResolutionFunction2DGaussian, ConvolutionDetectorResolution, PolFilter, RectangularDetector, FootprintSquare, FootprintGauss, and Beam.

Referenced by INode::checkNodeArgs(), ExemplarySamples::createBasic2DParaCrystalWithFTDis(), IProfile1D::pythonConstructor(), IProfile2D::pythonConstructor(), IFormFactor::pythonConstructor(), and IFormFactor::shapeName().

◆ clone()

IRotation* IRotation::clone ( ) const
overridepure virtual

◆ createInverse()

virtual IRotation* IRotation::createInverse ( ) const
pure virtual

Returns a new IRotation object that is the current object's inverse.

Implemented in RotationEuler, RotationZ, RotationY, RotationX, and IdentityRotation.

◆ createRotation()

IRotation * IRotation::createRotation ( const RotMatrix transform)
static

Definition at line 28 of file Rotations.cpp.

29 {
30  if (matrix.isIdentity())
31  return new IdentityRotation;
32  if (std::optional<double> angle = matrix.angleAroundCoordAxis(0))
33  return new RotationX(angle.value());
34  if (std::optional<double> angle = matrix.angleAroundCoordAxis(1))
35  return new RotationY(angle.value());
36  if (std::optional<double> angle = matrix.angleAroundCoordAxis(2))
37  return new RotationZ(angle.value());
38  auto angles = matrix.zxzEulerAngles();
39  return new RotationEuler(angles[0], angles[1], angles[2]);
40 }
The identity rotation, which leaves everything in place.
Definition: Rotations.h:58
A sequence of rotations about the z-x'-z'' axes.
Definition: Rotations.h:146
A rotation about the x axis.
Definition: Rotations.h:74
A rotation about the y axis.
Definition: Rotations.h:98
A rotation about the z axis.
Definition: Rotations.h:122

References RotMatrix::angleAroundCoordAxis(), RotMatrix::isIdentity(), and RotMatrix::zxzEulerAngles().

Referenced by ReParticle::bottomZ(), RotationEuler::createInverse(), createProduct(), and ReParticle::topZ().

Here is the call graph for this function:

◆ isIdentity()

bool IRotation::isIdentity ( ) const
virtual

Returns true if rotation matrix is identity matrix (no rotations)

Reimplemented in IdentityRotation.

Definition at line 47 of file Rotations.cpp.

48 {
49  return rotMatrix().isIdentity();
50 }
virtual RotMatrix rotMatrix() const =0
Returns transformation.
bool isIdentity() const
Determine if the transformation is trivial (identity)
Definition: RotMatrix.cpp:111

References RotMatrix::isIdentity(), and rotMatrix().

Referenced by ReParticle::createTransformedFormFactor().

Here is the call graph for this function:

◆ nodeChildren()

◆ nodeOffspring()

std::vector< const INode * > INode::nodeOffspring ( ) const
inherited

Returns all descendants.

Definition at line 61 of file INode.cpp.

62 {
63  std::vector<const INode*> result;
64  result.push_back(this);
65  for (const auto* child : nodeChildren()) {
66  for (const auto* p : child->nodeOffspring())
67  result.push_back(p);
68  }
69  return result;
70 }
virtual std::vector< const INode * > nodeChildren() const
Returns all children.
Definition: INode.cpp:56

References INode::nodeChildren().

Here is the call graph for this function:

◆ parDefs()

virtual std::vector<ParaMeta> INode::parDefs ( ) const
inlinevirtualinherited

Returns the parameter definitions, to be hard-coded in each leaf class.

Reimplemented in ConstantBackground, GaussSphere, FuzzySphere, RotationEuler, RotationZ, RotationY, RotationX, Crystal, Layer, HexagonalLattice2D, SquareLattice2D, BasicLattice2D, LayerRoughness, TruncatedSpheroid, TruncatedSphere, TruncatedCube, Spheroid, Sphere, SawtoothRippleLorentz, SawtoothRippleGauss, SawtoothRippleBox, Pyramid6, Pyramid4, Pyramid3, Pyramid2, Prism6, Prism3, PlatonicTetrahedron, PlatonicOctahedron, LongBoxLorentz, LongBoxGauss, Icosahedron, HorizontalCylinder, HollowSphere, HemiEllipsoid, EllipsoidalCylinder, Dodecahedron, Cylinder, CosineRippleLorentz, CosineRippleGauss, CosineRippleBox, Cone, CantellatedCube, Box, Bipyramid4, BarLorentz, BarGauss, Profile2DVoigt, Profile2DCone, Profile2DGate, Profile2DGauss, Profile2DCauchy, Profile1DVoigt, Profile1DCosine, Profile1DTriangle, Profile1DGate, Profile1DGauss, Profile1DCauchy, MisesGaussPeakShape, MisesFisherGaussPeakShape, LorentzFisherPeakShape, GaussFisherPeakShape, IsotropicLorentzPeakShape, IsotropicGaussPeakShape, ParticleLayout, InterferenceTwin, InterferenceRadialParaCrystal, InterferenceHardDisk, Interference2DSuperLattice, Interference2DParaCrystal, Interference1DLattice, DistributionTrapezoid, DistributionCosine, DistributionLogNormal, DistributionGaussian, DistributionLorentz, DistributionGate, ResolutionFunction2DGaussian, PolFilter, FootprintSquare, and FootprintGauss.

Definition at line 51 of file INode.h.

51 { return {}; }

Referenced by INode::checkNodeArgs(), and IFormFactor::pythonConstructor().

◆ rotMatrix()

◆ transferToCPP()

virtual void ICloneable::transferToCPP ( )
inlinevirtualinherited

Used for Python overriding of clone (see swig/tweaks.py)

Definition at line 32 of file ICloneable.h.

◆ transformed()

R3 IRotation::transformed ( const R3 &  v) const

Definition at line 42 of file Rotations.cpp.

43 {
44  return rotMatrix().transformed(v);
45 }
T transformed(const T &v) const
Return transformed vector v.
Definition: RotMatrix.cpp:76

References rotMatrix(), and RotMatrix::transformed().

Referenced by ReParticle::bottomZ(), Sphere::bottomZ(), IParticle::rotate(), ReParticle::topZ(), and Sphere::topZ().

Here is the call graph for this function:

◆ zInvariant()

bool IRotation::zInvariant ( ) const

Definition at line 52 of file Rotations.cpp.

53 {
54  return rotMatrix().isZRotation();
55 }
bool isZRotation() const
Definition: RotMatrix.cpp:126

References RotMatrix::isZRotation(), and rotMatrix().

Referenced by IFormFactor::canSliceAnalytically().

Here is the call graph for this function:

Member Data Documentation

◆ m_P


The documentation for this class was generated from the following files: