BornAgain  1.19.79
Open-source research software to simulate and fit neutron and x-ray reflectometry and grazing-incidence small-angle scattering
MisesGaussPeakShape Class Reference

Description

A peak shape that is a convolution of a Mises-Fisher distribution with a 3d Gaussian.

Definition at line 174 of file IPeakShape.h.

Inheritance diagram for MisesGaussPeakShape:
[legend]
Collaboration diagram for MisesGaussPeakShape:
[legend]

Public Member Functions

 MisesGaussPeakShape (double max_intensity, double radial_size, R3 zenith, double kappa)
 
 ~MisesGaussPeakShape () override
 
bool angularDisorder () const override
 Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed. More...
 
void checkNodeArgs () const
 Raises exception if a parameter value is invalid. More...
 
std::string className () const final
 Returns the class name, to be hard-coded in each leaf class that inherits from INode. More...
 
MisesGaussPeakShapeclone () const override
 
virtual std::vector< const INode * > nodeChildren () const
 Returns all children. More...
 
std::vector< const INode * > nodeOffspring () const
 Returns all descendants. More...
 
std::vector< ParaMetaparDefs () const final
 Returns the parameter definitions, to be hard-coded in each leaf class. More...
 
double peakDistribution (R3 q, R3 q_lattice_point) const override
 Peak shape at q from a reciprocal lattice point at q_lattice_point. More...
 
virtual void transferToCPP ()
 Used for Python overriding of clone (see swig/tweaks.py) More...
 

Protected Attributes

std::vector< double > m_P
 

Private Attributes

double m_kappa
 
double m_max_intensity
 
double m_radial_size
 
R3 m_zenith
 

Constructor & Destructor Documentation

◆ MisesGaussPeakShape()

MisesGaussPeakShape::MisesGaussPeakShape ( double  max_intensity,
double  radial_size,
R3  zenith,
double  kappa 
)

Definition at line 270 of file IPeakShape.cpp.

272  : m_max_intensity(max_intensity)
273  , m_radial_size(radial_size)
274  , m_zenith(zenith.unit())
275  , m_kappa(kappa)
276 {
277 }

Referenced by clone().

◆ ~MisesGaussPeakShape()

MisesGaussPeakShape::~MisesGaussPeakShape ( )
overridedefault

Member Function Documentation

◆ angularDisorder()

bool MisesGaussPeakShape::angularDisorder ( ) const
inlineoverridevirtual

Indicates if the peak shape encodes angular disorder, in which case all peaks in a spherical shell are needed.

Reimplemented from IPeakShape.

Definition at line 190 of file IPeakShape.h.

190 { return true; }

◆ checkNodeArgs()

void INode::checkNodeArgs ( ) const
inherited

Raises exception if a parameter value is invalid.

Definition at line 27 of file INode.cpp.

28 {
29  size_t nP = m_P.size();
30  if (parDefs().size() != nP) {
31  std::cerr << "BUG in class " << className() << std::endl;
32  std::cerr << "#m_P = " << nP << std::endl;
33  std::cerr << "#PDf = " << parDefs().size() << std::endl;
34  for (const ParaMeta& pm : parDefs())
35  std::cerr << " PDf: " << pm.name << std::endl;
36  ASSERT(0);
37  }
38  ASSERT(parDefs().size() == nP);
39  for (size_t i = 0; i < nP; ++i) {
40  const ParaMeta pm = parDefs()[i];
41 
43  if (pm.vMin == -INF) {
44  ASSERT(pm.vMax == +INF);
45  // nothing to do
46  } else if (pm.vMax == +INF) {
47  ASSERT(pm.vMin == 0);
48  limits = RealLimits::nonnegative();
49  } else {
50  limits = RealLimits::limited(pm.vMin, pm.vMax);
51  }
52  limits.check(pm.name, m_P[i]);
53  }
54 }
#define ASSERT(condition)
Definition: Assert.h:45
const double INF
Definition: INode.h:26
virtual std::vector< ParaMeta > parDefs() const
Returns the parameter definitions, to be hard-coded in each leaf class.
Definition: INode.h:51
std::vector< double > m_P
Definition: INode.h:63
virtual std::string className() const =0
Returns the class name, to be hard-coded in each leaf class that inherits from INode.
Limits for a real fit parameter.
Definition: RealLimits.h:24
static RealLimits limitless()
Creates an object without bounds (default)
Definition: RealLimits.cpp:139
void check(const std::string &name, double value) const
Throws if value is outside limits. Parameter 'name' is for exception message.
Definition: RealLimits.cpp:170
static RealLimits nonnegative()
Creates an object which can have only positive values with 0. included.
Definition: RealLimits.cpp:124
static RealLimits limited(double left_bound_value, double right_bound_value)
Creates an object bounded from the left and right.
Definition: RealLimits.cpp:134
Metadata of one model parameter.
Definition: INode.h:29
double vMin
Definition: INode.h:33
double vMax
Definition: INode.h:34
std::string name
Definition: INode.h:30

References ASSERT, RealLimits::check(), INode::className(), INF, RealLimits::limited(), RealLimits::limitless(), INode::m_P, ParaMeta::name, RealLimits::nonnegative(), INode::parDefs(), ParaMeta::vMax, and ParaMeta::vMin.

Referenced by BarGauss::BarGauss(), BarLorentz::BarLorentz(), Bipyramid4::Bipyramid4(), Box::Box(), CantellatedCube::CantellatedCube(), Cone::Cone(), ConstantBackground::ConstantBackground(), CosineRippleBox::CosineRippleBox(), CosineRippleGauss::CosineRippleGauss(), CosineRippleLorentz::CosineRippleLorentz(), Cylinder::Cylinder(), DistributionCosine::DistributionCosine(), DistributionGate::DistributionGate(), DistributionGaussian::DistributionGaussian(), DistributionLogNormal::DistributionLogNormal(), DistributionLorentz::DistributionLorentz(), DistributionTrapezoid::DistributionTrapezoid(), Dodecahedron::Dodecahedron(), EllipsoidalCylinder::EllipsoidalCylinder(), FootprintGauss::FootprintGauss(), FootprintSquare::FootprintSquare(), FuzzySphere::FuzzySphere(), GaussSphere::GaussSphere(), HemiEllipsoid::HemiEllipsoid(), HollowSphere::HollowSphere(), HorizontalCylinder::HorizontalCylinder(), Icosahedron::Icosahedron(), LongBoxGauss::LongBoxGauss(), LongBoxLorentz::LongBoxLorentz(), PlatonicOctahedron::PlatonicOctahedron(), PlatonicTetrahedron::PlatonicTetrahedron(), Prism3::Prism3(), Prism6::Prism6(), Profile1DCauchy::Profile1DCauchy(), Profile1DCosine::Profile1DCosine(), Profile1DGate::Profile1DGate(), Profile1DGauss::Profile1DGauss(), Profile1DTriangle::Profile1DTriangle(), Profile1DVoigt::Profile1DVoigt(), Profile2DCauchy::Profile2DCauchy(), Profile2DCone::Profile2DCone(), Profile2DGate::Profile2DGate(), Profile2DGauss::Profile2DGauss(), Profile2DVoigt::Profile2DVoigt(), Pyramid2::Pyramid2(), Pyramid3::Pyramid3(), Pyramid4::Pyramid4(), Pyramid6::Pyramid6(), RotationEuler::RotationEuler(), RotationX::RotationX(), RotationY::RotationY(), RotationZ::RotationZ(), SawtoothRippleBox::SawtoothRippleBox(), SawtoothRippleGauss::SawtoothRippleGauss(), SawtoothRippleLorentz::SawtoothRippleLorentz(), Sphere::Sphere(), Spheroid::Spheroid(), TruncatedCube::TruncatedCube(), TruncatedSphere::TruncatedSphere(), and TruncatedSpheroid::TruncatedSpheroid().

Here is the call graph for this function:

◆ className()

std::string MisesGaussPeakShape::className ( ) const
inlinefinalvirtual

Returns the class name, to be hard-coded in each leaf class that inherits from INode.

Implements INode.

Definition at line 180 of file IPeakShape.h.

180 { return "MisesGaussPeakShape"; }

◆ clone()

MisesGaussPeakShape * MisesGaussPeakShape::clone ( ) const
overridevirtual

Implements IPeakShape.

Definition at line 281 of file IPeakShape.cpp.

282 {
284 }
MisesGaussPeakShape(double max_intensity, double radial_size, R3 zenith, double kappa)
Definition: IPeakShape.cpp:270

References MisesGaussPeakShape(), m_kappa, m_max_intensity, m_radial_size, and m_zenith.

Here is the call graph for this function:

◆ nodeChildren()

◆ nodeOffspring()

std::vector< const INode * > INode::nodeOffspring ( ) const
inherited

Returns all descendants.

Definition at line 61 of file INode.cpp.

62 {
63  std::vector<const INode*> result;
64  result.push_back(this);
65  for (const auto* child : nodeChildren()) {
66  for (const auto* p : child->nodeOffspring())
67  result.push_back(p);
68  }
69  return result;
70 }
virtual std::vector< const INode * > nodeChildren() const
Returns all children.
Definition: INode.cpp:56

References INode::nodeChildren().

Here is the call graph for this function:

◆ parDefs()

std::vector<ParaMeta> MisesGaussPeakShape::parDefs ( ) const
inlinefinalvirtual

Returns the parameter definitions, to be hard-coded in each leaf class.

Reimplemented from INode.

Definition at line 181 of file IPeakShape.h.

182  {
183  return {{"MaxIntensity", "", "maximum intensity", 0, +INF, -1},
184  {"Radial Size", "nm", "radial size", 0, +INF, -1},
185  {"Kappa", "", "?", 0, +INF, -1}};
186  }

References INF.

◆ peakDistribution()

double MisesGaussPeakShape::peakDistribution ( R3  q,
R3  q_lattice_point 
) const
overridevirtual

Peak shape at q from a reciprocal lattice point at q_lattice_point.

Implements IPeakShape.

Definition at line 286 of file IPeakShape.cpp.

287 {
288  const R3 vy = m_zenith.cross(q_lattice_point);
289  const R3 zxq = m_zenith.cross(q);
290  if (vy.mag2() <= 0.0 || zxq.mag2() <= 0.0) {
291  const double dq2 = (q - q_lattice_point).mag2();
292  return m_max_intensity * Gauss3D(dq2, m_radial_size);
293  }
294  const double m_qr = q.mag();
295  const R3 m_p = q_lattice_point;
296  const R3 uy = vy.unit();
297  const R3 ux = uy.cross(m_zenith);
298  const R3 q_ortho = q - q.dot(m_zenith) * m_zenith;
299  const double phi0 = std::acos(q_ortho.unit().dot(ux));
300  const double theta = std::acos(q.unit().dot(m_zenith));
301  const double pre = MisesPrefactor(m_kappa);
302  const double integral = RealIntegrator().integrate(
303  [&](double phi) -> double {
304  R3 q_rot = m_qr
305  * (std::sin(theta) * std::cos(phi) * ux
306  + std::sin(theta) * std::sin(phi) * uy + std::cos(theta) * m_zenith);
307  const double dq2 = (q_rot - m_p).mag2();
308  const double gauss = Gauss3D(dq2, m_radial_size);
309  const double mises = std::exp(m_kappa * (std::cos(phi0 - phi) - 1.0));
310  return gauss * mises;
311  },
312  0.0, M_TWOPI);
313  return m_max_intensity * pre * integral;
314 }
#define M_TWOPI
Definition: Constants.h:54
To integrate a real function of a real variable.
Definition: IntegratorGK.h:28
double integrate(const std::function< double(double)> &f, double lmin, double lmax)
static constexpr double gauss
Definition: Units.h:50

References Units::gauss, RealIntegrator::integrate(), m_kappa, m_max_intensity, m_radial_size, M_TWOPI, and m_zenith.

Here is the call graph for this function:

◆ transferToCPP()

virtual void ICloneable::transferToCPP ( )
inlinevirtualinherited

Used for Python overriding of clone (see swig/tweaks.py)

Definition at line 32 of file ICloneable.h.

Member Data Documentation

◆ m_kappa

double MisesGaussPeakShape::m_kappa
private

Definition at line 196 of file IPeakShape.h.

Referenced by clone(), and peakDistribution().

◆ m_max_intensity

double MisesGaussPeakShape::m_max_intensity
private

Definition at line 193 of file IPeakShape.h.

Referenced by clone(), and peakDistribution().

◆ m_P

◆ m_radial_size

double MisesGaussPeakShape::m_radial_size
private

Definition at line 194 of file IPeakShape.h.

Referenced by clone(), and peakDistribution().

◆ m_zenith

R3 MisesGaussPeakShape::m_zenith
private

Definition at line 195 of file IPeakShape.h.

Referenced by clone(), and peakDistribution().


The documentation for this class was generated from the following files: