BornAgain  1.18.0
Simulate and fit neutron and x-ray scattering at grazing incidence
FormFactorCrystal Class Reference
Inheritance diagram for FormFactorCrystal:
Collaboration diagram for FormFactorCrystal:

Public Member Functions

 FormFactorCrystal (const Lattice &lattice, const IFormFactor &basis_form_factor, const IFormFactor &meso_form_factor, double position_variance=0.0)
 
 ~FormFactorCrystal () override final
 
FormFactorCrystalclone () const override final
 
void accept (INodeVisitor *visitor) const override final
 
void setAmbientMaterial (const Material &material) override
 
double volume () const override final
 
double radialExtension () const override final
 
double bottomZ (const IRotation &rotation) const override
 
double topZ (const IRotation &rotation) const override final
 
complex_t evaluate (const WavevectorInfo &wavevectors) const override final
 
Eigen::Matrix2cd evaluatePol (const WavevectorInfo &wavevectors) const override final
 
IFormFactorcreateSlicedFormFactor (ZLimits limits, const IRotation &rot, kvector_t translation) const
 
virtual void setSpecularInfo (std::unique_ptr< const ILayerRTCoefficients >, std::unique_ptr< const ILayerRTCoefficients >)
 
virtual const Materialmaterial () const
 
std::vector< const Material * > containedMaterials () const
 
virtual void transferToCPP ()
 
virtual std::string treeToString () const
 
void registerChild (INode *node)
 
virtual std::vector< const INode * > getChildren () const
 
virtual void setParent (const INode *newParent)
 
const INodeparent () const
 
INodeparent ()
 
int copyNumber (const INode *node) const
 
std::string displayName () const
 
ParameterPoolcreateParameterTree () const
 
ParameterPoolparameterPool () const
 
std::string parametersToString () const
 
RealParameterregisterParameter (const std::string &name, double *parpointer)
 
void registerVector (const std::string &base_name, kvector_t *p_vec, const std::string &units="nm")
 
void setParameterValue (const std::string &name, double value)
 
void setVectorValue (const std::string &base_name, kvector_t value)
 
RealParameterparameter (const std::string &name) const
 
virtual void onChange ()
 
void removeParameter (const std::string &name)
 
void removeVector (const std::string &base_name)
 
void setName (const std::string &name)
 
const std::string & getName () const
 

Static Public Member Functions

static std::string XComponentName (const std::string &base_name)
 
static std::string YComponentName (const std::string &base_name)
 
static std::string ZComponentName (const std::string &base_name)
 

Protected Member Functions

virtual bool canSliceAnalytically (const IRotation &rot) const
 
virtual IFormFactorsliceFormFactor (ZLimits limits, const IRotation &rot, kvector_t translation) const
 

Protected Attributes

const size_t m_NP
 
std::vector< double > m_P
 

Private Member Functions

void calculateLargestReciprocalDistance ()
 
complex_t debyeWallerFactor (const kvector_t &q_i) const
 

Private Attributes

Lattice m_lattice
 
IFormFactormp_basis_form_factor
 
IFormFactormp_meso_form_factor
 
double m_position_variance
 
double m_max_rec_length
 
const INodem_parent {nullptr}
 
std::string m_name
 
std::unique_ptr< ParameterPoolm_pool
 

Detailed Description

The form factor of a MesoCrystal.

Definition at line 24 of file FormFactorCrystal.h.

Constructor & Destructor Documentation

◆ FormFactorCrystal()

FormFactorCrystal::FormFactorCrystal ( const Lattice lattice,
const IFormFactor basis_form_factor,
const IFormFactor meso_form_factor,
double  position_variance = 0.0 
)

Definition at line 20 of file FormFactorCrystal.cpp.

22  : m_lattice(lattice), mp_basis_form_factor(basis_form_factor.clone()),
23  mp_meso_form_factor(meso_form_factor.clone()), m_position_variance(position_variance)
24 {
25  setName("FormFactorCrystal");
27 }
IFormFactor * mp_meso_form_factor
The outer shape of this mesocrystal.
void calculateLargestReciprocalDistance()
IFormFactor * mp_basis_form_factor
IFormFactor * clone() const override=0
Returns a clone of this ISample object.
void setName(const std::string &name)

References calculateLargestReciprocalDistance(), and IParameterized::setName().

Referenced by clone().

Here is the call graph for this function:

◆ ~FormFactorCrystal()

FormFactorCrystal::~FormFactorCrystal ( )
finaloverride

Definition at line 29 of file FormFactorCrystal.cpp.

30 {
31  delete mp_basis_form_factor;
32  delete mp_meso_form_factor;
33 }

References mp_basis_form_factor, and mp_meso_form_factor.

Member Function Documentation

◆ clone()

FormFactorCrystal* FormFactorCrystal::clone ( ) const
inlinefinaloverridevirtual

Returns a clone of this ISample object.

Implements IFormFactor.

Definition at line 31 of file FormFactorCrystal.h.

32  {
35  }
FormFactorCrystal(const Lattice &lattice, const IFormFactor &basis_form_factor, const IFormFactor &meso_form_factor, double position_variance=0.0)

References FormFactorCrystal(), m_lattice, m_position_variance, mp_basis_form_factor, and mp_meso_form_factor.

Here is the call graph for this function:

◆ accept()

void FormFactorCrystal::accept ( INodeVisitor visitor) const
inlinefinaloverridevirtual

Calls the INodeVisitor's visit method.

Implements INode.

Definition at line 37 of file FormFactorCrystal.h.

37 { visitor->visit(this); }
virtual void visit(const BasicLattice *)
Definition: INodeVisitor.h:154

◆ setAmbientMaterial()

void FormFactorCrystal::setAmbientMaterial ( const Material )
inlineoverridevirtual

Passes the material in which this particle is embedded.

Implements IFormFactor.

Definition at line 39 of file FormFactorCrystal.h.

40  {
42  }
virtual void setAmbientMaterial(const Material &)=0
Passes the material in which this particle is embedded.
virtual const Material * material() const
Returns nullptr, unless overwritten to return a specific material.
Definition: ISample.h:37

References ISample::material(), mp_basis_form_factor, and IFormFactor::setAmbientMaterial().

Here is the call graph for this function:

◆ volume()

double FormFactorCrystal::volume ( ) const
inlinefinaloverridevirtual

Returns the total volume of the particle of this form factor's shape.

Reimplemented from IFormFactor.

Definition at line 44 of file FormFactorCrystal.h.

44 { return mp_meso_form_factor->volume(); }
virtual double volume() const
Returns the total volume of the particle of this form factor's shape.
Definition: IFormFactor.cpp:56

References mp_meso_form_factor, and IFormFactor::volume().

Referenced by evaluate(), and evaluatePol().

Here is the call graph for this function:

◆ radialExtension()

double FormFactorCrystal::radialExtension ( ) const
inlinefinaloverridevirtual

Returns the (approximate in some cases) radial size of the particle of this form factor's shape.

This is used for SSCA calculations

Implements IFormFactor.

Definition at line 45 of file FormFactorCrystal.h.

virtual double radialExtension() const =0
Returns the (approximate in some cases) radial size of the particle of this form factor's shape.

References mp_meso_form_factor, and IFormFactor::radialExtension().

Here is the call graph for this function:

◆ bottomZ()

double FormFactorCrystal::bottomZ ( const IRotation rotation) const
overridevirtual

Returns the z-coordinate of the lowest point in this shape after a given rotation.

Implements IFormFactor.

Definition at line 35 of file FormFactorCrystal.cpp.

36 {
37  return mp_meso_form_factor->bottomZ(rotation);
38 }
virtual double bottomZ(const IRotation &rotation) const =0
Returns the z-coordinate of the lowest point in this shape after a given rotation.

References IFormFactor::bottomZ(), and mp_meso_form_factor.

Here is the call graph for this function:

◆ topZ()

double FormFactorCrystal::topZ ( const IRotation rotation) const
finaloverridevirtual

Returns the z-coordinate of the lowest point in this shape after a given rotation.

Implements IFormFactor.

Definition at line 40 of file FormFactorCrystal.cpp.

41 {
42  return mp_meso_form_factor->topZ(rotation);
43 }
virtual double topZ(const IRotation &rotation) const =0
Returns the z-coordinate of the lowest point in this shape after a given rotation.

References mp_meso_form_factor, and IFormFactor::topZ().

Here is the call graph for this function:

◆ evaluate()

complex_t FormFactorCrystal::evaluate ( const WavevectorInfo wavevectors) const
finaloverridevirtual

Returns scattering amplitude for complex wavevectors ki, kf.

Implements IFormFactor.

Definition at line 45 of file FormFactorCrystal.cpp.

46 {
47  // retrieve reciprocal lattice vectors within reasonable radius
48  cvector_t q = wavevectors.getQ();
49  double radius = 2.1 * m_max_rec_length;
50  std::vector<kvector_t> rec_vectors =
52 
53  // perform convolution on these lattice vectors
54  complex_t result(0.0, 0.0);
55  for (const auto& rec : rec_vectors) {
56  auto dw_factor = debyeWallerFactor(rec);
57  WavevectorInfo basis_wavevectors(kvector_t(), -rec, wavevectors.getWavelength());
58  complex_t basis_factor = mp_basis_form_factor->evaluate(basis_wavevectors);
59  WavevectorInfo meso_wavevectors(cvector_t(), rec.complex() - q,
60  wavevectors.getWavelength());
61  complex_t meso_factor = mp_meso_form_factor->evaluate(meso_wavevectors);
62  result += dw_factor * basis_factor * meso_factor;
63  }
64  // the transformed delta train gets a factor of (2pi)^3/V, but the (2pi)^3
65  // is canceled by the convolution of Fourier transforms :
66  double volume = m_lattice.volume();
67  return result / volume;
68 }
std::complex< double > complex_t
Definition: Complex.h:20
BasicVector3D< std::complex< double > > cvector_t
Definition: Vectors3D.h:22
BasicVector3D< double > kvector_t
Definition: Vectors3D.h:21
BasicVector3D< double > real() const
Returns real parts.
BasicVector3D< std::complex< double > > complex() const
Returns this, trivially converted to complex type.
double volume() const override final
Returns the total volume of the particle of this form factor's shape.
complex_t debyeWallerFactor(const kvector_t &q_i) const
virtual complex_t evaluate(const WavevectorInfo &wavevectors) const =0
Returns scattering amplitude for complex wavevectors ki, kf.
std::vector< kvector_t > reciprocalLatticeVectorsWithinRadius(const kvector_t input_vector, double radius) const
Computes a list of reciprocal lattice vectors within a specified distance of a given vector.
Definition: Lattice.cpp:126
double volume() const
Returns the volume of the unit cell.
Definition: Lattice.cpp:88
Holds all wavevector information relevant for calculating form factors.
cvector_t getQ() const
double getWavelength() const
const double radius(5 *Units::nanometer)

References BasicVector3D< T >::complex(), debyeWallerFactor(), IFormFactor::evaluate(), WavevectorInfo::getQ(), WavevectorInfo::getWavelength(), m_lattice, m_max_rec_length, mp_basis_form_factor, mp_meso_form_factor, anonymous_namespace{SlicedCylindersBuilder.cpp}::radius(), BasicVector3D< T >::real(), Lattice::reciprocalLatticeVectorsWithinRadius(), Lattice::volume(), and volume().

Here is the call graph for this function:

◆ evaluatePol()

Eigen::Matrix2cd FormFactorCrystal::evaluatePol ( const WavevectorInfo wavevectors) const
finaloverridevirtual

Returns scattering amplitude for matrix interactions.

Reimplemented from IFormFactor.

Definition at line 70 of file FormFactorCrystal.cpp.

71 {
72  // retrieve reciprocal lattice vectors within reasonable radius
73  cvector_t q = wavevectors.getQ();
74  double radius = 2.1 * m_max_rec_length;
75  std::vector<kvector_t> rec_vectors =
77 
78  // perform convolution on these lattice vectors
79  Eigen::Matrix2cd result = Eigen::Matrix2cd::Zero();
80  for (const auto& rec : rec_vectors) {
81  auto dw_factor = debyeWallerFactor(rec);
82  WavevectorInfo basis_wavevectors(kvector_t(), -rec, wavevectors.getWavelength());
83  Eigen::Matrix2cd basis_factor = mp_basis_form_factor->evaluatePol(basis_wavevectors);
84  WavevectorInfo meso_wavevectors(cvector_t(), rec.complex() - q,
85  wavevectors.getWavelength());
86  complex_t meso_factor = mp_meso_form_factor->evaluate(meso_wavevectors);
87  result += dw_factor * basis_factor * meso_factor;
88  }
89  // the transformed delta train gets a factor of (2pi)^3/V, but the (2pi)^3
90  // is canceled by the convolution of Fourier transforms :
91  double volume = m_lattice.volume();
92  return result / volume;
93 }
virtual Eigen::Matrix2cd evaluatePol(const WavevectorInfo &wavevectors) const
Returns scattering amplitude for matrix interactions.
Definition: IFormFactor.cpp:49

References BasicVector3D< T >::complex(), debyeWallerFactor(), IFormFactor::evaluate(), IFormFactor::evaluatePol(), WavevectorInfo::getQ(), WavevectorInfo::getWavelength(), m_lattice, m_max_rec_length, mp_basis_form_factor, mp_meso_form_factor, anonymous_namespace{SlicedCylindersBuilder.cpp}::radius(), BasicVector3D< T >::real(), Lattice::reciprocalLatticeVectorsWithinRadius(), Lattice::volume(), and volume().

Here is the call graph for this function:

◆ calculateLargestReciprocalDistance()

void FormFactorCrystal::calculateLargestReciprocalDistance ( )
private

Definition at line 95 of file FormFactorCrystal.cpp.

96 {
100 
101  m_max_rec_length = std::max(M_PI / a1.mag(), M_PI / a2.mag());
102  m_max_rec_length = std::max(m_max_rec_length, M_PI / a3.mag());
103 }
#define M_PI
Definition: MathConstants.h:39
double mag() const
Returns magnitude of the vector.
kvector_t getBasisVectorB() const
Returns basis vector b.
Definition: Lattice.h:47
kvector_t getBasisVectorC() const
Returns basis vector c.
Definition: Lattice.h:50
kvector_t getBasisVectorA() const
Returns basis vector a.
Definition: Lattice.h:44

References Lattice::getBasisVectorA(), Lattice::getBasisVectorB(), Lattice::getBasisVectorC(), m_lattice, m_max_rec_length, M_PI, and BasicVector3D< T >::mag().

Referenced by FormFactorCrystal().

Here is the call graph for this function:

◆ debyeWallerFactor()

complex_t FormFactorCrystal::debyeWallerFactor ( const kvector_t q_i) const
private

Definition at line 105 of file FormFactorCrystal.cpp.

106 {
107  auto q2 = q_i.mag2();
108  return std::exp(-q2 * m_position_variance / 2.0);
109 }
double mag2() const
Returns magnitude squared of the vector.

References m_position_variance, and BasicVector3D< T >::mag2().

Referenced by evaluate(), and evaluatePol().

Here is the call graph for this function:

◆ createSlicedFormFactor()

IFormFactor * IFormFactor::createSlicedFormFactor ( ZLimits  limits,
const IRotation rot,
kvector_t  translation 
) const
inherited

Creates a (possibly sliced) form factor with the given rotation and translation.

Definition at line 35 of file IFormFactor.cpp.

37 {
38  if (ShapeIsContainedInLimits(*this, limits, rot, translation))
39  return createTransformedFormFactor(*this, rot, translation);
40  if (ShapeOutsideLimits(*this, limits, rot, translation))
41  return nullptr;
42  if (canSliceAnalytically(rot))
43  return sliceFormFactor(limits, rot, translation);
44  throw std::runtime_error(getName()
45  + "::createSlicedFormFactor error: not supported for "
46  "the given rotation!");
47 }
IFormFactor * createTransformedFormFactor(const IFormFactor &formfactor, const IRotation &rot, kvector_t translation)
Definition: IFormFactor.cpp:77
virtual IFormFactor * sliceFormFactor(ZLimits limits, const IRotation &rot, kvector_t translation) const
Actually slices the form factor or throws an exception.
Definition: IFormFactor.cpp:72
virtual bool canSliceAnalytically(const IRotation &rot) const
Checks if slicing has a fast analytical solution.
Definition: IFormFactor.cpp:67
const std::string & getName() const
bool ShapeIsContainedInLimits(const IFormFactor &formfactor, ZLimits limits, const IRotation &rot, kvector_t translation)
Definition: IFormFactor.cpp:94
bool ShapeOutsideLimits(const IFormFactor &formfactor, ZLimits limits, const IRotation &rot, kvector_t translation)

References IFormFactor::canSliceAnalytically(), createTransformedFormFactor(), IParameterized::getName(), anonymous_namespace{IFormFactor.cpp}::ShapeIsContainedInLimits(), anonymous_namespace{IFormFactor.cpp}::ShapeOutsideLimits(), and IFormFactor::sliceFormFactor().

Here is the call graph for this function:

◆ setSpecularInfo()

void IFormFactor::setSpecularInfo ( std::unique_ptr< const ILayerRTCoefficients ,
std::unique_ptr< const ILayerRTCoefficients  
)
virtualinherited

Sets reflection/transmission info.

Reimplemented in FormFactorDWBAPol, and FormFactorDWBA.

Definition at line 62 of file IFormFactor.cpp.

64 {
65 }

◆ canSliceAnalytically()

bool IFormFactor::canSliceAnalytically ( const IRotation rot) const
protectedvirtualinherited

Checks if slicing has a fast analytical solution.

Reimplemented in IFormFactorBorn, FormFactorFullSphere, and FormFactorDot.

Definition at line 67 of file IFormFactor.cpp.

68 {
69  return false;
70 }

Referenced by IFormFactor::createSlicedFormFactor().

◆ sliceFormFactor()

IFormFactor * IFormFactor::sliceFormFactor ( ZLimits  limits,
const IRotation rot,
kvector_t  translation 
) const
protectedvirtualinherited

Actually slices the form factor or throws an exception.

Reimplemented in FormFactorTruncatedSpheroid, FormFactorTruncatedSphere, FormFactorTetrahedron, FormFactorPyramid, FormFactorPrism6, FormFactorPrism3, FormFactorLongBoxLorentz, FormFactorLongBoxGauss, FormFactorFullSpheroid, FormFactorFullSphere, FormFactorEllipsoidalCylinder, FormFactorCylinder, FormFactorCuboctahedron, FormFactorCone6, FormFactorCone, FormFactorBox, and FormFactorAnisoPyramid.

Definition at line 72 of file IFormFactor.cpp.

73 {
74  throw std::runtime_error(getName() + "::sliceFormFactor error: not implemented!");
75 }

References IParameterized::getName().

Referenced by IFormFactor::createSlicedFormFactor().

Here is the call graph for this function:

◆ material()

◆ containedMaterials()

std::vector< const Material * > ISample::containedMaterials ( ) const
inherited

Returns set of unique materials contained in this ISample.

Definition at line 23 of file ISample.cpp.

24 {
25  std::vector<const Material*> result;
26  if (const Material* p_material = material())
27  result.push_back(p_material);
28  for (auto child : getChildren()) {
29  if (const ISample* sample = dynamic_cast<const ISample*>(child)) {
30  for (const Material* p_material : sample->containedMaterials())
31  result.push_back(p_material);
32  }
33  }
34  return result;
35 }
virtual std::vector< const INode * > getChildren() const
Returns a vector of children (const).
Definition: INode.cpp:64
Pure virtual base class for sample components and properties related to scattering.
Definition: ISample.h:28
A wrapper for underlying material implementation.
Definition: Material.h:29

References INode::getChildren(), and ISample::material().

Referenced by MultiLayerUtils::ContainsCompatibleMaterials(), anonymous_namespace{ProcessedSample.cpp}::ContainsMagneticMaterial(), and SampleToPython::initLabels().

Here is the call graph for this function:

◆ transferToCPP()

virtual void ICloneable::transferToCPP ( )
inlinevirtualinherited

Used for Python overriding of clone (see swig/tweaks.py)

Definition at line 34 of file ICloneable.h.

◆ treeToString()

std::string INode::treeToString ( ) const
virtualinherited

Returns multiline string representing tree structure below the node.

Definition at line 53 of file INode.cpp.

54 {
55  return NodeUtils::nodeToString(*this);
56 }
std::string nodeToString(const INode &node)
Returns multiline string representing tree structure starting from given node.
Definition: NodeUtils.cpp:67

References NodeUtils::nodeToString().

Here is the call graph for this function:

◆ registerChild()

void INode::registerChild ( INode node)
inherited

Definition at line 58 of file INode.cpp.

59 {
60  ASSERT(node);
61  node->setParent(this);
62 }
#define ASSERT(condition)
Definition: Assert.h:26
virtual void setParent(const INode *newParent)
Definition: INode.cpp:69

References ASSERT, and INode::setParent().

Referenced by ParticleLayout::addAndRegisterAbstractParticle(), ParticleCoreShell::addAndRegisterCore(), MultiLayer::addAndRegisterInterface(), MultiLayer::addAndRegisterLayer(), ParticleCoreShell::addAndRegisterShell(), Layer::addLayout(), ParticleComposition::addParticlePointer(), Beam::Beam(), Crystal::Crystal(), IDetector::IDetector(), Simulation::initialize(), MesoCrystal::initialize(), Instrument::Instrument(), Beam::operator=(), Instrument::operator=(), Particle::Particle(), ParticleDistribution::ParticleDistribution(), IParticle::rotate(), ParticleLayout::setAndRegisterInterferenceFunction(), Simulation::setBackground(), InterferenceFunction1DLattice::setDecayFunction(), InterferenceFunction2DLattice::setDecayFunction(), Instrument::setDetector(), IDetector::setDetectorResolution(), Beam::setFootprintFactor(), Particle::setFormFactor(), InterferenceFunctionFinite3DLattice::setLattice(), InterferenceFunction2DLattice::setLattice(), InterferenceFunction2DParaCrystal::setLattice(), InterferenceFunction2DSuperLattice::setLattice(), InterferenceFunctionFinite2DLattice::setLattice(), InterferenceFunctionRadialParaCrystal::setProbabilityDistribution(), InterferenceFunction2DParaCrystal::setProbabilityDistributions(), ConvolutionDetectorResolution::setResolutionFunction(), IParticle::setRotation(), LayerInterface::setRoughness(), and InterferenceFunction2DSuperLattice::setSubstructureIFF().

Here is the call graph for this function:

◆ getChildren()

◆ setParent()

void INode::setParent ( const INode newParent)
virtualinherited

Reimplemented in SampleProvider.

Definition at line 69 of file INode.cpp.

70 {
71  m_parent = newParent;
72 }
const INode * m_parent
Definition: INode.h:81

References INode::m_parent.

Referenced by INode::registerChild(), SampleProvider::setBuilder(), and SampleProvider::setParent().

◆ parent() [1/2]

const INode * INode::parent ( ) const
inherited

◆ parent() [2/2]

INode * INode::parent ( )
inherited

Definition at line 79 of file INode.cpp.

80 {
81  return const_cast<INode*>(m_parent);
82 }
Base class for tree-like structures containing parameterized objects.
Definition: INode.h:49

References INode::m_parent.

◆ copyNumber()

int INode::copyNumber ( const INode node) const
inherited

Returns copyNumber of child, which takes into account existence of children with same name.

Definition at line 84 of file INode.cpp.

85 {
86  if (node->parent() != this)
87  return -1;
88 
89  int result(-1), count(0);
90  for (auto child : getChildren()) {
91 
92  if (child == nullptr)
93  throw std::runtime_error("INode::copyNumber() -> Error. Nullptr as child.");
94 
95  if (child == node)
96  result = count;
97 
98  if (child->getName() == node->getName())
99  ++count;
100  }
101 
102  return count > 1 ? result : -1;
103 }
const INode * parent() const
Definition: INode.cpp:74

References INode::getChildren(), IParameterized::getName(), and INode::parent().

Referenced by INode::displayName().

Here is the call graph for this function:

◆ displayName()

std::string INode::displayName ( ) const
inherited

Returns display name, composed from the name of node and it's copy number.

Definition at line 105 of file INode.cpp.

106 {
107  std::string result = getName();
108  if (m_parent) {
109  int index = m_parent->copyNumber(this);
110  if (index >= 0)
111  result = result + std::to_string(index);
112  }
113  return result;
114 }
int copyNumber(const INode *node) const
Returns copyNumber of child, which takes into account existence of children with same name.
Definition: INode.cpp:84

References INode::copyNumber(), IParameterized::getName(), and INode::m_parent.

Referenced by NodeUtils::nodePath(), and anonymous_namespace{NodeUtils.cpp}::nodeString().

Here is the call graph for this function:

◆ createParameterTree()

ParameterPool * INode::createParameterTree ( ) const
virtualinherited

Creates new parameter pool, with all local parameters and those of its children.

Reimplemented from IParameterized.

Definition at line 116 of file INode.cpp.

117 {
118  std::unique_ptr<ParameterPool> result(new ParameterPool);
119 
121  it.first();
122  while (!it.isDone()) {
123  const INode* child = it.getCurrent();
124  const std::string path = NodeUtils::nodePath(*child, this->parent()) + "/";
125  child->parameterPool()->copyToExternalPool(path, result.get());
126  it.next();
127  }
128 
129  return result.release();
130 }
ParameterPool * parameterPool() const
Returns pointer to the parameter pool.
Iterator through INode tree of objects.
Definition: NodeIterator.h:90
Container with parameters for IParameterized object.
Definition: ParameterPool.h:30
void copyToExternalPool(const std::string &prefix, ParameterPool *other_pool) const
Copies parameters of given pool to other pool, prepeding prefix to the parameter names.
std::string nodePath(const INode &node, const INode *root=nullptr)
Returns path composed of node's displayName, with respect to root node.
Definition: NodeUtils.cpp:82

References ParameterPool::copyToExternalPool(), NodeIterator< Strategy >::first(), NodeIterator< Strategy >::getCurrent(), NodeIterator< Strategy >::isDone(), NodeIterator< Strategy >::next(), NodeUtils::nodePath(), IParameterized::parameterPool(), and INode::parent().

Referenced by ParticleDistribution::generateParticles(), Simulation::runSimulation(), DepthProbeSimulation::validateParametrization(), OffSpecSimulation::validateParametrization(), and SpecularSimulation::validateParametrization().

Here is the call graph for this function:

◆ parameterPool()

ParameterPool* IParameterized::parameterPool ( ) const
inlineinherited

Returns pointer to the parameter pool.

Definition at line 38 of file IParameterized.h.

38 { return m_pool.get(); } // has non-const usages!
std::unique_ptr< ParameterPool > m_pool
parameter pool (kind of pointer-to-implementation)

References IParameterized::m_pool.

Referenced by pyfmt2::argumentList(), SampleBuilderNode::borrow_builder_parameters(), INode::createParameterTree(), INode::INode(), IParameterized::IParameterized(), anonymous_namespace{NodeUtils.cpp}::poolToString(), SampleBuilderNode::reset(), and IDistribution1D::setUnits().

◆ parametersToString()

std::string IParameterized::parametersToString ( ) const
inherited

Returns multiline string representing available parameters.

Definition at line 40 of file IParameterized.cpp.

41 {
42  std::ostringstream result;
43  std::unique_ptr<ParameterPool> P_pool(createParameterTree());
44  result << *P_pool << "\n";
45  return result.str();
46 }
virtual ParameterPool * createParameterTree() const
Creates new parameter pool, with all local parameters and those of its children.

References IParameterized::createParameterTree().

Here is the call graph for this function:

◆ registerParameter()

RealParameter & IParameterized::registerParameter ( const std::string &  name,
double *  parpointer 
)
inherited

Definition at line 48 of file IParameterized.cpp.

49 {
50  return m_pool->addParameter(
51  new RealParameter(name, data, getName(), [&]() -> void { onChange(); }));
52 }
virtual void onChange()
Action to be taken in inherited class when a parameter has changed.
Wraps a parameter of type double.
Definition: RealParameter.h:32

References IParameterized::getName(), IParameterized::m_pool, and IParameterized::onChange().

Referenced by BasicLattice::BasicLattice(), Beam::Beam(), CylindersInBABuilder::CylindersInBABuilder(), DetectionProperties::DetectionProperties(), HexagonalLattice::HexagonalLattice(), IInterferenceFunction::IInterferenceFunction(), INode::INode(), InterferenceFunction1DLattice::InterferenceFunction1DLattice(), InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(), InterferenceFunctionHardDisk::InterferenceFunctionHardDisk(), InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(), InterferenceFunctionTwin::InterferenceFunctionTwin(), Lattice2D::Lattice2D(), LayerRoughness::LayerRoughness(), MultiLayer::MultiLayer(), ParticleDistribution::ParticleDistribution(), PlainMultiLayerBySLDBuilder::PlainMultiLayerBySLDBuilder(), IParticle::registerAbundance(), ParticleLayout::registerParticleDensity(), Layer::registerThickness(), IParameterized::registerVector(), ParticleLayout::registerWeight(), ResolutionFunction2DGaussian::ResolutionFunction2DGaussian(), ResonatorBuilder::ResonatorBuilder(), Lattice2D::setRotationEnabled(), SquareLattice::SquareLattice(), and TriangularRippleBuilder::TriangularRippleBuilder().

Here is the call graph for this function:

◆ registerVector()

void IParameterized::registerVector ( const std::string &  base_name,
kvector_t p_vec,
const std::string &  units = "nm" 
)
inherited

Definition at line 54 of file IParameterized.cpp.

56 {
57  registerParameter(XComponentName(base_name), &((*p_vec)[0])).setUnit(units);
58  registerParameter(YComponentName(base_name), &((*p_vec)[1])).setUnit(units);
59  registerParameter(ZComponentName(base_name), &((*p_vec)[2])).setUnit(units);
60 }
RealParameter & registerParameter(const std::string &name, double *parpointer)
static std::string XComponentName(const std::string &base_name)
static std::string YComponentName(const std::string &base_name)
static std::string ZComponentName(const std::string &base_name)
RealParameter & setUnit(const std::string &name)

References IParameterized::registerParameter(), RealParameter::setUnit(), IParameterized::XComponentName(), IParameterized::YComponentName(), and IParameterized::ZComponentName().

Referenced by Beam::Beam(), DetectionProperties::DetectionProperties(), InterferenceFunctionTwin::InterferenceFunctionTwin(), MultiLayer::MultiLayer(), Lattice::registerBasisVectors(), and IParticle::registerPosition().

Here is the call graph for this function:

◆ setParameterValue()

void IParameterized::setParameterValue ( const std::string &  name,
double  value 
)
inherited

Definition at line 62 of file IParameterized.cpp.

63 {
64  if (name.find('*') == std::string::npos && name.find('/') == std::string::npos) {
65  m_pool->setParameterValue(name, value);
66  } else {
67  std::unique_ptr<ParameterPool> P_pool{createParameterTree()};
68  if (name.find('*') != std::string::npos)
69  P_pool->setMatchedParametersValue(name, value);
70  else
71  P_pool->setParameterValue(name, value);
72  }
73 }
int setMatchedParametersValue(const std::string &wildcards, double value)
Sets value of the nonzero parameters that match pattern ('*' allowed), or throws.

References IParameterized::createParameterTree(), IParameterized::m_pool, and ParameterPool::setMatchedParametersValue().

Referenced by AsymRippleBuilder::buildSample(), and IParameterized::setVectorValue().

Here is the call graph for this function:

◆ setVectorValue()

void IParameterized::setVectorValue ( const std::string &  base_name,
kvector_t  value 
)
inherited

Definition at line 75 of file IParameterized.cpp.

76 {
77  setParameterValue(XComponentName(base_name), value.x());
78  setParameterValue(YComponentName(base_name), value.y());
79  setParameterValue(ZComponentName(base_name), value.z());
80 }
T z() const
Returns z-component in cartesian coordinate system.
Definition: BasicVector3D.h:68
T y() const
Returns y-component in cartesian coordinate system.
Definition: BasicVector3D.h:66
T x() const
Returns x-component in cartesian coordinate system.
Definition: BasicVector3D.h:64
void setParameterValue(const std::string &name, double value)

References IParameterized::setParameterValue(), BasicVector3D< T >::x(), IParameterized::XComponentName(), BasicVector3D< T >::y(), IParameterized::YComponentName(), BasicVector3D< T >::z(), and IParameterized::ZComponentName().

Here is the call graph for this function:

◆ parameter()

RealParameter * IParameterized::parameter ( const std::string &  name) const
inherited

◆ onChange()

◆ removeParameter()

void IParameterized::removeParameter ( const std::string &  name)
inherited

◆ removeVector()

void IParameterized::removeVector ( const std::string &  base_name)
inherited

Definition at line 93 of file IParameterized.cpp.

94 {
95  removeParameter(XComponentName(base_name));
96  removeParameter(YComponentName(base_name));
97  removeParameter(ZComponentName(base_name));
98 }
void removeParameter(const std::string &name)

References IParameterized::removeParameter(), IParameterized::XComponentName(), IParameterized::YComponentName(), and IParameterized::ZComponentName().

Referenced by IParticle::registerPosition().

Here is the call graph for this function:

◆ XComponentName()

std::string IParameterized::XComponentName ( const std::string &  base_name)
staticinherited

◆ YComponentName()

std::string IParameterized::YComponentName ( const std::string &  base_name)
staticinherited

Definition at line 105 of file IParameterized.cpp.

106 {
107  return base_name + "Y";
108 }

Referenced by IParameterized::registerVector(), IParameterized::removeVector(), and IParameterized::setVectorValue().

◆ ZComponentName()

std::string IParameterized::ZComponentName ( const std::string &  base_name)
staticinherited

Definition at line 110 of file IParameterized.cpp.

111 {
112  return base_name + "Z";
113 }

Referenced by IParameterized::registerVector(), IParameterized::removeVector(), and IParameterized::setVectorValue().

◆ setName()

void IParameterized::setName ( const std::string &  name)
inlineinherited

Definition at line 68 of file IParameterized.h.

68 { m_name = name; }
std::string m_name

References IParameterized::m_name.

Referenced by BasicLattice::BasicLattice(), Beam::Beam(), Layer::clone(), ConvolutionDetectorResolution::ConvolutionDetectorResolution(), LayersWithAbsorptionBuilder::createSampleByIndex(), Basic2DParaCrystalBuilder::createSampleByIndex(), ParticleInVacuumBuilder::createSampleByIndex(), SimpleMagneticRotationBuilder::createSampleByIndex(), Crystal::Crystal(), DetectionProperties::DetectionProperties(), DistributionHandler::DistributionHandler(), FormFactorBAPol::FormFactorBAPol(), FormFactorCoreShell::FormFactorCoreShell(), FormFactorCrystal(), FormFactorDecoratorMaterial::FormFactorDecoratorMaterial(), FormFactorDecoratorPositionFactor::FormFactorDecoratorPositionFactor(), FormFactorDecoratorRotation::FormFactorDecoratorRotation(), FormFactorDWBA::FormFactorDWBA(), FormFactorDWBAPol::FormFactorDWBAPol(), FormFactorWeighted::FormFactorWeighted(), HexagonalLattice::HexagonalLattice(), IDetector::IDetector(), DepthProbeSimulation::initialize(), GISASSimulation::initialize(), OffSpecSimulation::initialize(), SpecularSimulation::initialize(), SpecularDetector1D::initialize(), MesoCrystal::initialize(), Particle::initialize(), ParticleComposition::initialize(), INode::INode(), Instrument::Instrument(), InterferenceFunction1DLattice::InterferenceFunction1DLattice(), InterferenceFunction2DLattice::InterferenceFunction2DLattice(), InterferenceFunction2DParaCrystal::InterferenceFunction2DParaCrystal(), InterferenceFunction2DSuperLattice::InterferenceFunction2DSuperLattice(), InterferenceFunction3DLattice::InterferenceFunction3DLattice(), InterferenceFunctionFinite2DLattice::InterferenceFunctionFinite2DLattice(), InterferenceFunctionFinite3DLattice::InterferenceFunctionFinite3DLattice(), InterferenceFunctionHardDisk::InterferenceFunctionHardDisk(), InterferenceFunctionNone::InterferenceFunctionNone(), InterferenceFunctionRadialParaCrystal::InterferenceFunctionRadialParaCrystal(), InterferenceFunctionTwin::InterferenceFunctionTwin(), ISampleBuilder::ISampleBuilder(), IsGISAXSDetector::IsGISAXSDetector(), Lattice::Lattice(), Layer::Layer(), LayerInterface::LayerInterface(), LayerRoughness::LayerRoughness(), MultiLayer::MultiLayer(), Beam::operator=(), SampleBuilderNode::operator=(), ParticleCoreShell::ParticleCoreShell(), ParticleDistribution::ParticleDistribution(), ParticleLayout::ParticleLayout(), RectangularDetector::RectangularDetector(), SampleBuilderNode::reset(), ResolutionFunction2DGaussian::ResolutionFunction2DGaussian(), SampleBuilderNode::SampleBuilderNode(), SampleBuilderNode::setSBN(), SphericalDetector::SphericalDetector(), and SquareLattice::SquareLattice().

◆ getName()

Member Data Documentation

◆ m_lattice

Lattice FormFactorCrystal::m_lattice
private

◆ mp_basis_form_factor

IFormFactor* FormFactorCrystal::mp_basis_form_factor
private

◆ mp_meso_form_factor

IFormFactor* FormFactorCrystal::mp_meso_form_factor
private

The outer shape of this mesocrystal.

Definition at line 62 of file FormFactorCrystal.h.

Referenced by bottomZ(), clone(), evaluate(), evaluatePol(), radialExtension(), topZ(), volume(), and ~FormFactorCrystal().

◆ m_position_variance

double FormFactorCrystal::m_position_variance
private

Definition at line 63 of file FormFactorCrystal.h.

Referenced by clone(), and debyeWallerFactor().

◆ m_max_rec_length

double FormFactorCrystal::m_max_rec_length
private

Definition at line 64 of file FormFactorCrystal.h.

Referenced by calculateLargestReciprocalDistance(), evaluate(), and evaluatePol().

◆ m_parent

const INode* INode::m_parent {nullptr}
privateinherited

Definition at line 81 of file INode.h.

Referenced by INode::displayName(), INode::parent(), and INode::setParent().

◆ m_NP

const size_t INode::m_NP
protectedinherited

Definition at line 86 of file INode.h.

Referenced by INode::INode().

◆ m_P

std::vector<double> INode::m_P
protectedinherited

Definition at line 87 of file INode.h.

Referenced by INode::INode(), and IFootprintFactor::setWidthRatio().

◆ m_name

std::string IParameterized::m_name
privateinherited

Definition at line 72 of file IParameterized.h.

Referenced by IParameterized::getName(), and IParameterized::setName().

◆ m_pool

std::unique_ptr<ParameterPool> IParameterized::m_pool
privateinherited

The documentation for this class was generated from the following files: