1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
#!/usr/bin/env python3
"""
Square lattice of cylinders inside finite layer with usage of average material
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
def get_sample(cyl_height=5*nm):
"""
Returns a sample with cylinders on a substrate.
"""
# defining materials
m_vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
m_layer = ba.RefractiveMaterial("Layer", 3e-6, 2e-8)
m_substrate = ba.RefractiveMaterial("Substrate", 6e-6, 2e-8)
m_particle = ba.RefractiveMaterial("Particle", 3e-5, 2e-8)
# cylindrical particle
cylinder_ff = ba.Cylinder(5*nm, cyl_height)
cylinder = ba.Particle(m_particle, cylinder_ff)
cylinder.translate(R3(0, 0, -cyl_height))
particle_layout = ba.ParticleLayout()
particle_layout.addParticle(cylinder)
# interference function
interference = ba.Interference2DLattice(ba.SquareLattice2D(15*nm, 0))
pdf = ba.Profile2DCauchy(300*nm, 300*nm, 0)
interference.setDecayFunction(pdf)
particle_layout.setInterference(interference)
vacuum_layer = ba.Layer(m_vacuum)
intermediate_layer = ba.Layer(m_layer, 5*nm)
intermediate_layer.addLayout(particle_layout)
substrate_layer = ba.Layer(m_substrate)
sample = ba.MultiLayer()
sample.addLayer(vacuum_layer)
sample.addLayer(intermediate_layer)
sample.addLayer(substrate_layer)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = bp.simargs['n']
detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
simulation.options().setUseAvgMaterials(True)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=100)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|