1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
#!/usr/bin/env python3
"""
GISAS by a a distribution of differently oriented
square lattices of cylinders on a substrate.
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
def get_sample():
material_vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
material_substrate = ba.RefractiveMaterial("Substrate", 6e-6, 2e-8)
material_particle = ba.RefractiveMaterial("Particle", 6e-4, 2e-8)
toplayer = ba.Layer(material_vacuum)
substrate = ba.Layer(material_substrate)
ff = ba.Cylinder(3*nm, 4*nm)
particle = ba.Particle(material_particle, ff.clone())
distr = ba.DistributionGate(0*deg, 90*deg)
distr.setNSamples(21)
for parsample in distr.distributionSamples():
layout = ba.ParticleLayout(particle)
iff = ba.Interference2DLattice(ba.SquareLattice2D(25*nm, parsample.value))
iff.setDecayFunction(ba.Profile2DCauchy(100*nm, 100*nm, 0))
layout.setInterference(iff)
layout.setTotalParticleSurfaceDensity(0.1*parsample.weight)
toplayer.addLayout(layout)
sample = ba.MultiLayer()
sample.addLayer(toplayer)
sample.addLayer(substrate)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = bp.simargs['n']
detector = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0, 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=100)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|