1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
#!/usr/bin/env python3
"""
Cylinder form factor in Born approximation
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
Returns a sample with cylinders in a homogeneous environment ("Vacuum"),
implying a simulation in plain Born approximation.
"""
# Define materials
material_Particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_Vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Define form factors
ff = ba.Cylinder(5*nm, 5*nm)
# Define particles
particle = ba.Particle(material_Particle, ff)
# Define particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle)
layout.setTotalParticleSurfaceDensity(0.01)
# Define layers
layer = ba.Layer(material_Vacuum)
layer.addLayout(layout)
# Define sample
sample = ba.MultiLayer()
sample.addLayer(layer)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = bp.simargs['n']
detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 3*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=200)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|