1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
#!/usr/bin/env python3
"""
This example demonstrates how to fit actual experimental data
by M. Fitzsimmons et al. that is published in
https://doi.org/10.5281/zenodo.4072376
"""
import os, sys
import matplotlib.pyplot as plt
import numpy as np
import bornagain as ba
from bornagain import angstrom, ba_plot as bp
# filename of the experimental data to be loaded
datadir = os.getenv('BA_EXAMPLE_DATA_DIR', '')
filename = 'RvsQ_36563_36662.txt.gz'
filepath = os.path.join(datadir, filename)
# restrict the Q-range of the data used for fitting
qmin = 0.18
qmax = 2.4
# number of points on which the computed result is plotted
scan_size = 1500
# Use fixed values for the SLD of the substrate and Pt layer
sldPt = (6.3568e-06, 1.8967e-09)
sldSi = (2.0728e-06, 2.3747e-11)
####################################################################
# Create Sample and Simulation #
####################################################################
def get_sample(params):
mat_ambient = ba.MaterialBySLD("Ambient", 0, 0)
mat_layer = ba.MaterialBySLD("Pt", *sldPt)
mat_substrate = ba.MaterialBySLD("Si", *sldSi)
ambient_layer = ba.Layer(mat_ambient)
layer = ba.Layer(mat_layer, params["t_pt/nm"])
substrate_layer = ba.Layer(mat_substrate)
r_si = ba.LayerRoughness(params["r_si/nm"])
r_pt = ba.LayerRoughness(params["r_pt/nm"])
sample = ba.MultiLayer()
sample.addLayer(ambient_layer)
sample.addLayerWithTopRoughness(layer, r_pt)
sample.addLayerWithTopRoughness(substrate_layer, r_si)
return sample
def get_simulation(q_axis, parameters):
sample = get_sample(parameters)
scan = ba.QzScan(q_axis)
scan.setOffset(parameters["q_offset"])
n_sig = 4.0
n_samples = 25
distr = ba.DistributionGaussian(0., parameters["q_res/q"], 25, 4.)
scan.setAbsoluteQResolution(distr)
simulation = ba.SpecularSimulation(scan, sample)
return simulation
def run_simulation(q_axis, fitParams):
parameters = dict(fitParams, **fixedParams)
simulation = get_simulation(q_axis, parameters)
return simulation.simulate()
def qr(result):
"""
Return q and reflectivity arrays from simulation result.
"""
q = np.array(result.convertedBinCenters(ba.Coords_QSPACE))
r = np.array(result.array(ba.Coords_QSPACE))
return q, r
####################################################################
# Plot Handling #
####################################################################
def plot(q, r, exp, filename, params=None):
"""
Plot the simulated result together with the experimental data.
"""
fig = plt.figure()
ax = fig.add_subplot(111)
ax.errorbar(exp[0],
exp[1],
xerr=exp[3],
yerr=exp[2],
label="R",
fmt='.',
markersize=1.,
linewidth=0.6,
color='r')
ax.plot(q, r, label="Simulation", color='C0', linewidth=0.5)
ax.set_yscale('log')
ax.set_xlabel("Q [nm$^{^-1}$]")
ax.set_ylabel("R")
y = 0.5
if params is not None:
for n, v in params.items():
plt.text(0.7, y, f"{n} = {v:.3g}", transform=ax.transAxes)
y += 0.05
plt.tight_layout()
plt.savefig(filename)
####################################################################
# Data Handling #
####################################################################
def get_Experimental_data(filepath, qmin, qmax):
"""
Read experimental data, remove duplicate q values, convert q to nm^-1.
"""
data = np.genfromtxt(filepath, unpack=True)
r0 = np.where(data[0] - np.roll(data[0], 1) == 0)
data = np.delete(data, r0, 1)
data[0] = data[0]/angstrom
data[3] = data[3]/angstrom
data[1] = data[1]
data[2] = data[2]
so = np.argsort(data[0])
data = data[:, so]
minIndex = np.argmin(np.abs(data[0] - qmin))
maxIndex = np.argmin(np.abs(data[0] - qmax))
return data[:, minIndex:maxIndex + 1]
####################################################################
# Fit Function #
####################################################################
def run_fit_ba(q_axis, r_data, r_uncertainty, simulationFactory,
startParams):
fit_objective = ba.FitObjective()
fit_objective.setObjectiveMetric("chi2")
fit_objective.addSimulationAndData(
lambda params: simulationFactory(q_axis, params), r_data,
r_uncertainty, 1)
fit_objective.initPrint(10)
params = ba.Parameters()
for name, p in startParams.items():
params.add(name, p[0], min=p[1], max=p[2])
minimizer = ba.Minimizer()
result = minimizer.minimize(fit_objective.evaluate, params)
fit_objective.finalize(result)
return {r.name(): r.value for r in result.parameters()}
####################################################################
# Main Function #
####################################################################
if __name__ == '__main__':
if len(sys.argv) > 1 and sys.argv[1] == "fit":
fixedParams = {
# parameters can be moved here to keep them fixed
}
fixedParams = {d: v[0] for d, v in fixedParams.items()}
startParams = {
# own starting values
"q_offset": (0, -0.02, 0.02),
"q_res/q": (0, 0, 0.02),
"t_pt/nm": (53, 40, 60),
"r_si/nm": (1.22, 0, 5),
"r_pt/nm": (0.25, 0, 5),
}
fit = True
else:
startParams = {}
fixedParams = {
# parameters from our own fit run
'q_offset': 0.015085985992837999,
'q_res/q': 0.010156450689003465,
't_pt/nm': 48.564838355355405,
'r_si/nm': 1.2857515425763575,
'r_pt/nm': 0.2868252673771518,
}
fit = False
paramsInitial = {d: v[0] for d, v in startParams.items()}
qzs = np.linspace(qmin, qmax, scan_size)
q, r = qr(run_simulation(qzs, paramsInitial))
data = get_Experimental_data(filepath, qmin, qmax)
plot(q, r, data, "PtLayerFit_initial.pdf",
dict(paramsInitial, **fixedParams))
if fit:
fitResult = run_fit_ba(data[0], data[1], data[2], run_simulation,
startParams)
print("Fit Result:")
print(fitResult)
q, r = qr(run_simulation(qzs, fitParams=fitResult))
plot(q, r, data, "PtLayerFit_fit.pdf",
dict(fitResult, **fixedParams))
plt.show()
|