1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
|
#!/usr/bin/env python3
"""
Sample from the article D. Babonneau et. al., Phys. Rev. B 85, 235415, 2012 (Fig.3)
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
Returns a sample with a grating on a substrate, modelled by triangular ripples
forming a 1D Paracrystal.
"""
# Define materials
material_Particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_Substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
material_Vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Define form factors
ff = ba.SawtoothRippleBox(100*nm, 20*nm, 4*nm, -3*nm)
# Define particles
particle = ba.Particle(material_Particle, ff)
# Define 2D lattices
lattice = ba.BasicLattice2D(200*nm, 50*nm, 90*deg, 0)
# Define interference functions
iff = ba.Interference2DLattice(lattice)
iff_pdf = ba.Profile2DGauss(160*nm, 16*nm, 0)
iff.setDecayFunction(iff_pdf)
# Define particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle)
layout.setInterference(iff)
layout.setTotalParticleSurfaceDensity(0.0001)
# Define layers
layer_1 = ba.Layer(material_Vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_Substrate)
# Define sample
sample = ba.MultiLayer()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.16*nm, 0.3*deg)
detector = ba.SphericalDetector(200, -1.5*deg, 1.5*deg, 200, 0,
2.5*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=0)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|