1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
|
#!/usr/bin/env python3
"""
Spheres on two hexagonal close packed layers
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
def get_sample():
"""
Returns a sample with spheres on a substrate,
forming two hexagonal close packed layers.
"""
# Define materials
material_Particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_Substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
material_Vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Define form factors
ff_1 = ba.Sphere(10*nm)
ff_2 = ba.Sphere(10*nm)
# Define particles
particle_1 = ba.Particle(material_Particle, ff_1)
particle_2 = ba.Particle(material_Particle, ff_2)
particle_2_position = R3(10*nm, 10*nm, 17.3205080757*nm)
particle_2.translate(particle_2_position)
# Define composition of particles at specific positions
basis = ba.Compound()
basis.addComponent(particle_1)
basis.addComponent(particle_2)
# Define 2D lattices
lattice = ba.HexagonalLattice2D(20*nm, 0)
# Define interference functions
iff = ba.Interference2DLattice(lattice)
iff_pdf = ba.Profile2DCauchy(10*nm, 10*nm, 0)
iff.setDecayFunction(iff_pdf)
# Define particle layouts
layout = ba.ParticleLayout()
layout.addParticle(basis)
layout.setInterference(iff)
layout.setTotalParticleSurfaceDensity(0.00288675134595)
# Define layers
layer_1 = ba.Layer(material_Vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_Substrate)
# Define sample
sample = ba.MultiLayer()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = bp.simargs['n']
detector = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0, 1*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=200)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|