1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
|
#!/usr/bin/env python3
"""
Custom form factor in DWBA.
"""
import cmath
import bornagain as ba
from bornagain import ba_plot as bp, deg, angstrom, nm
def sinc(x):
if abs(x) == 0:
return 1.
return cmath.sin(x)/x
class CustomFormFactor(ba.IFormFactor):
"""
A custom defined form factor.
The particle is a prism of height H,
with a base in form of a Greek cross ("plus" sign) with side length L.
"""
def __init__(self, L, H):
ba.IFormFactor.__init__(self)
# parameters describing the form factor
self.L = L
self.H = H
def clone(self):
"""
IMPORTANT NOTE:
The clone method needs to call transferToCPP() on the cloned object
to transfer the ownership of the clone to the cpp code
"""
cloned_ff = CustomFormFactor(self.L, self.H)
cloned_ff.transferToCPP()
return cloned_ff
def formfactor(self, q):
qzhH = 0.5*q.z()*self.H
qxhL = 0.5*q.x()*self.L
qyhL = 0.5*q.y()*self.L
return 0.5*self.H*self.L**2*cmath.exp(complex(0., 1.)*qzhH)*\
sinc(qzhH)*(sinc(0.5*qyhL)*(sinc(qxhL)-0.5*sinc(0.5*qxhL))+\
sinc(0.5*qxhL)*sinc(qyhL))
def spanZ(self, rotation):
return ba.Span(0, self.H)
def get_sample():
"""
Returns a sample with particles, having a custom form factor, on a substrate.
"""
# defining materials
m_vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
m_substrate = ba.RefractiveMaterial("Substrate", 6e-6, 2e-8)
m_particle = ba.RefractiveMaterial("Particle", 6e-4, 2e-8)
# collection of particles
ff = CustomFormFactor(20*nm, 15*nm)
particle = ba.Particle(m_particle, ff)
particle_layout = ba.ParticleLayout()
particle_layout.addParticle(particle)
vacuum_layer = ba.Layer(m_vacuum)
vacuum_layer.addLayout(particle_layout)
substrate_layer = ba.Layer(m_substrate)
# assemble sample
sample = ba.MultiLayer()
sample.addLayer(vacuum_layer)
sample.addLayer(substrate_layer)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 1*angstrom, 0.2*deg)
n = bp.simargs['n']
det = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0, 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, det)
simulation.options().setNumberOfThreads(
1) # deactivate multithreading (why?)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=100)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|