1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
#!/usr/bin/env python3
"""
MultiLayer with correlated roughness
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
Returns a sample with two layers on a substrate, with correlated roughnesses.
"""
# defining materials
m_vacuum = ba.RefractiveMaterial("ambience", 0, 0)
m_part_a = ba.RefractiveMaterial("PartA", 5e-6, 0)
m_part_b = ba.RefractiveMaterial("PartB", 10e-6, 0)
m_substrate = ba.RefractiveMaterial("substrate", 15e-6, 0)
# defining layers
l_ambience = ba.Layer(m_vacuum)
l_part_a = ba.Layer(m_part_a, 2.5*nm)
l_part_b = ba.Layer(m_part_b, 5*nm)
l_substrate = ba.Layer(m_substrate)
sigma, hurst, corrLength = 1*nm, 0.3, 5*nm
roughness = ba.LayerRoughness(sigma, hurst, corrLength)
my_sample = ba.MultiLayer()
# adding layers
my_sample.addLayer(l_ambience)
n_repetitions = 5
for _ in range(n_repetitions):
my_sample.addLayerWithTopRoughness(l_part_a, roughness)
my_sample.addLayerWithTopRoughness(l_part_b, roughness)
my_sample.addLayerWithTopRoughness(l_substrate, roughness)
my_sample.setCrossCorrLength(10*nm)
return my_sample
def get_simulation(sample):
beam = ba.Beam(5e11, 0.1*nm, 0.2*deg)
detector = ba.SphericalDetector(bp.simargs['n'], 1*deg, 0, 0.5*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
bp.parse_args(sim_n=200)
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
|