1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
#!/usr/bin/env python3
"""
Basic GISAS from oriented boxes, with different detector resolutions.
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
Dilute random assembly of oriented boxes on a substrate.
"""
from bornagain import std_samples
mat = ba.RefractiveMaterial("Particle", 6e-4, 2e-08)
ff = ba.Box(30*nm, 30*nm, 30*nm)
particle = ba.Particle(mat, ff)
return std_samples.substrate_plus_particle(particle)
if __name__ == '__main__':
sample = get_sample()
# Beam
wavelength = 0.1*nm
alpha_i = 0.2*deg
beam = ba.Beam(1, wavelength, alpha_i)
# Detector
nx = 142
ny = 200
detector = ba.SphericalDetector(nx, -1.5*deg, 1.5*deg, ny, 0, 3*deg)
results = []
simulation = ba.ScatteringSimulation(beam, sample, detector)
result = simulation.simulate()
result.setTitle("no resolution")
results.append(result)
detector.setResolutionFunction(
ba.ResolutionFunction2DGaussian(0.2*deg, 0.01*deg))
simulation = ba.ScatteringSimulation(beam, sample, detector)
result = simulation.simulate()
result.setTitle("resolution 0.2deg, 0.01deg")
results.append(result)
detector.setResolutionFunction(
ba.ResolutionFunction2DGaussian(0.2*deg, 0.2*deg))
simulation = ba.ScatteringSimulation(beam, sample, detector)
result = simulation.simulate()
result.setTitle("resolution 0.2deg, 0.2deg")
results.append(result)
bp.make_plot_row(results)
bp.plt.show()
|