1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
#!/usr/bin/env python3
"""
Cylinders of two different sizes in Local Monodisperse Approximation
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
import matplotlib.pyplot as plt
def get_sample():
"""
A sample with cylinders of two different sizes on a substrate.
The cylinder positions are modelled in Local Monodisperse Approximation.
"""
# Materials
material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Form factors
ff_1 = ba.Cylinder(5*nm, 5*nm)
ff_2 = ba.Cylinder(8*nm, 8*nm)
# Particles
particle_1 = ba.Particle(material_particle, ff_1)
particle_2 = ba.Particle(material_particle, ff_2)
# Interference functions
iff_1 = ba.InterferenceRadialParacrystal(16.8*nm, 1000*nm)
iff_1_pdf = ba.Profile1DGauss(3*nm)
iff_1.setProbabilityDistribution(iff_1_pdf)
iff_2 = ba.InterferenceRadialParacrystal(22.8*nm, 1000*nm)
iff_2_pdf = ba.Profile1DGauss(3*nm)
iff_2.setProbabilityDistribution(iff_2_pdf)
# Particle layouts
layout_1 = ba.ParticleLayout()
layout_1.addParticle(particle_1, 0.8)
layout_1.setInterference(iff_1)
layout_1.setTotalParticleSurfaceDensity(0.01)
layout_2 = ba.ParticleLayout()
layout_2.addParticle(particle_2, 0.2)
layout_2.setInterference(iff_2)
layout_2.setTotalParticleSurfaceDensity(0.01)
# Layers
layer_1 = ba.Layer(vacuum)
layer_1.addLayout(layout_1)
layer_1.addLayout(layout_2)
layer_2 = ba.Layer(material_substrate)
# Sample
sample = ba.MultiLayer()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = 200
detector = ba.SphericalDetector(n, 0., 2*deg, n, 0., 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
plt.show()
|