Finding intensity peaks

To find the intensity peaks from a GISAXS simulation, the result must be casted in the form of a histogram2d. This must then be passed to the method FindPeaks to get the (x,y) coordinates of each peak:

    result = run_simulation().histogram2d()
    peaks = ba.FindPeaks(result, 2, "nomarkov", 0.001)
    peaks_x = [peak[0] for peak in peaks]
    ypeak_y = [peak[1] for peak in peaks]

Intensity images

The following script offers a complete example in which the peaks are found after carrying on a GISAXS simulation. This particular example uses as a sample a grating of long boxes distributed along a 1D lattice.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python3
"""
Simulation of grating using very long boxes and 1D lattice.
Monte-carlo integration is used to get rid of
large-particle form factor oscillations.
"""
import bornagain as ba
from bornagain import angstrom, ba_plot as bp, deg, micrometer, nm
from matplotlib import pyplot as plt


def get_sample(lattice_rotation_angle=0*deg):
    """
    A sample with a grating on a substrate.
    lattice_rotation_angle = 0 - beam parallel to grating lines
    lattice_rotation_angle = 90*deg - beam perpendicular to grating lines
    """
    # Material
    material_si = ba.RefractiveMaterial("Si", 5.7816e-6, 1.0229e-7)

    box_length, box_width, box_height = 50*micrometer, 70*nm, 50*nm
    lattice_length = 150*nm

    # collection of particles
    interference = ba.Interference1DLattice(
        lattice_length, 90*deg - lattice_rotation_angle)

    pdf = ba.Profile1DGauss(450)
    interference.setDecayFunction(pdf)

    box_ff = ba.LongBoxLorentz(box_length, box_width, box_height)
    box = ba.Particle(material_si, box_ff)
    box.rotate(ba.RotationZ(lattice_rotation_angle))

    particle_layout = ba.ParticleLayout()
    particle_layout.addParticle(box)
    particle_layout.setInterference(interference)

    sigma, hurst, corrLength = 5*nm, 0.5, 10*nm
    autocorr = ba.K_CorrelationModel(sigma, hurst, corrLength)
    interlayer = ba.TanhInterlayer()
    roughness = ba.LayerRoughness(autocorr, interlayer)

    # assembling the sample
    vacuum_layer = ba.Layer(ba.Vacuum())
    vacuum_layer.addLayout(particle_layout)
    substrate_layer = ba.Layer(material_si, roughness)

    sample = ba.Sample()
    sample.addLayer(vacuum_layer)
    sample.addLayer(substrate_layer)
    return sample


def get_simulation(sample):
    beam = ba.Beam(1e8, 1.34*angstrom, 0.4*deg)
    n = 401
    detector = ba.SphericalDetector(n, -0.5*deg, 0.5*deg, n, 0, 0.5*deg)
    simulation = ba.ScatteringSimulation(beam, sample, detector)
    simulation.options().setMonteCarloIntegration(True, 100)
    return simulation


if __name__ == '__main__':
    sample = get_sample()
    simulation = get_simulation(sample)
    if not "__no_terminal__" in globals():
        simulation.setTerminalProgressMonitor()
    result = simulation.simulate()
    peaks = ba.FindPeaks(result, 2, "nomarkov", 0.001)
    xpeaks = [peak[0] for peak in peaks]
    ypeaks = [peak[1] for peak in peaks]
    print(peaks)

    plt.plot(xpeaks,
             ypeaks,
             marker='x',
             linestyle='none',
             color='white',
             markersize=10)

    bp.plot_simulation_result(result)
    plt.show()
auto/Examples/scatter2d/FindPeaks.py