1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
#!/usr/bin/env python3
"""
Cylindrical particle made from two materials.
Particle crosses air/substrate interface.
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
import matplotlib.pyplot as plt
def get_sample():
"""
A multilayer with substrate/air layers.
Vacuum layer contains cylindrical particles made of two materials.
Particle shifted down to cross interface.
"""
# Materials
material_Ag = ba.RefractiveMaterial("Ag", 1.245e-05, 5.419e-07)
material_substrate = ba.RefractiveMaterial("Substrate", 3.212e-06,
3.244e-08)
material_Teflon = ba.RefractiveMaterial("Teflon", 2.9e-06, 6.019e-09)
vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Form factors
ff_1 = ba.Cylinder(10*nm, 4*nm)
ff_2 = ba.Cylinder(10*nm, 10*nm)
# Particles
subparticle_1 = ba.Particle(material_Ag, ff_1)
subparticle_1.translate(R3(0, 0, 10*nm))
subparticle_2 = ba.Particle(material_Teflon, ff_2)
# Composition of particles at specific positions
particle = ba.Compound()
particle.addComponent(subparticle_1)
particle.addComponent(subparticle_2)
particle.translate(R3(0, 0, -10*nm))
# Particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle)
layout.setTotalParticleSurfaceDensity(1)
# Layers
layer_1 = ba.Layer(vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_substrate)
# Sample
sample = ba.Sample()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = 100
detector = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0., 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_simulation_result(result)
plt.show()
|