Dense hemispheres

Supposing a Simulation has been defined in which some layers contain embedded particles of different materials; to regard those layers as composed by a single material, the setUseAvgMaterials method is used:

simulation.options().setUseAvgMaterials(True)

The figure shows the intensity map produced by the script below.

The script below shows how to average materials when simulating scattering from a square lattice of hemispheres on a substrate.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
"""
Square lattice of half spheres on substrate with usage of average material
and slicing
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
import matplotlib.pyplot as plt


def get_sample():
    """
    A sample with cylinders on a substrate.
    """

    # Materials
    material_particle = ba.RefractiveMaterial("Particle", 3e-05, 2e-08)
    material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
    vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)

    # Form factors
    ff = ba.TruncatedSphere(5*nm, 5*nm, 0)

    # Particles
    particle = ba.Particle(material_particle, ff)

    # 2D lattices
    lattice = ba.BasicLattice2D(10*nm, 10*nm, 90*deg, 0)

    # Interference functions
    iff = ba.Interference2DLattice(lattice)
    iff_pdf = ba.Profile2DCauchy(100*nm, 100*nm, 0)
    iff.setDecayFunction(iff_pdf)

    # Particle layouts
    layout = ba.ParticleLayout()
    layout.addParticle(particle)
    layout.setInterference(iff)
    layout.setTotalParticleSurfaceDensity(0.01)

    # Layers
    layer_1 = ba.Layer(vacuum)
    layer_1.setNumberOfSlices(10)
    layer_1.addLayout(layout)
    layer_2 = ba.Layer(material_substrate)

    # Sample
    sample = ba.Sample()
    sample.addLayer(layer_1)
    sample.addLayer(layer_2)

    return sample


def get_simulation(sample):
    beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
    n = 100
    detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
    simulation = ba.ScatteringSimulation(beam, sample, detector)
    simulation.options().setUseAvgMaterials(True)
    return simulation


if __name__ == '__main__':
    sample = get_sample()
    simulation = get_simulation(sample)
    result = simulation.simulate()
    bp.plot_simulation_result(result)
    plt.show()
auto/Examples/scatter2d/HalfSpheresInAverageTopLayer.py