Rotated Pyramids

Scattering from a monodisperse distribution of rotated pyramids.

This example illustrates how the in-plane rotation of non-radially symmetric particles influences the scattering pattern.

  • The sample is made of pyramids deposited on a substrate.
  • Each pyramid is characterized by a squared-base side length of $10$ nm, a height of $5$ nm, and a base angle $\alpha$ equal to $54.73^{\circ}$.
  • These particles are rotated in the $(x, y)$ plane by $45^{\circ}$.
  • There is no interference between the scattered waves.
  • The wavelength is equal to 0.1 nm.
  • The incident angles are $\alpha_i = 0.2 ^{\circ}$ and $\varphi_i = 0^{\circ}$.

Real-space model

Intensity image

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#!/usr/bin/env python3
"""
Rotated pyramids on top of substrate
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm


def get_sample():
    """
    A sample with rotated pyramids on top of a substrate.
    """

    # Materials
    material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
    material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)

    # Form factors
    ff = ba.Pyramid4(10*nm, 5*nm, 54.73*deg)

    # Particles
    particle = ba.Particle(material_particle, ff)
    particle_rotation = ba.RotationZ(45*deg)
    particle.rotate(particle_rotation)

    # Particle layouts
    layout = ba.ParticleLayout()
    layout.addParticle(particle)
    layout.setTotalParticleSurfaceDensity(0.01)

    # Layers
    layer_1 = ba.Layer(ba.Vacuum())
    layer_1.addLayout(layout)
    layer_2 = ba.Layer(material_substrate)

    # Sample
    sample = ba.Sample()
    sample.addLayer(layer_1)
    sample.addLayer(layer_2)

    return sample


def get_simulation(sample):
    beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
    n = 200
    detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
    simulation = ba.ScatteringSimulation(beam, sample, detector)
    return simulation


if __name__ == '__main__':
    sample = get_sample()
    simulation = get_simulation(sample)
    result = simulation.simulate()
    bp.plot_simulation_result(result)
    bp.plt.show()
auto/Examples/scatter2d/RotatedPyramids.py