1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
#!/usr/bin/env python3
"""
Fitting example: fit with masks
"""
import numpy as np
from matplotlib import pyplot as plt
import bornagain as ba
from bornagain import deg, angstrom, nm
def get_sample(params):
"""
Build the sample representing cylinders on top of
substrate without interference.
"""
radius = params["radius"]
height = params["height"]
m_vacuum = ba.HomogeneousMaterial("Vacuum", 0, 0)
m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8)
cylinder_ff = ba.FormFactorCylinder(radius, height)
cylinder = ba.Particle(m_particle, cylinder_ff)
layout = ba.ParticleLayout()
layout.addParticle(cylinder)
vacuum_layer = ba.Layer(m_vacuum)
vacuum_layer.addLayout(layout)
substrate_layer = ba.Layer(m_substrate, 0)
multi_layer = ba.MultiLayer()
multi_layer.addLayer(vacuum_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer
def get_simulation(params, add_masks=True):
"""
Create and return GISAXS simulation with beam and detector defined
"""
simulation = ba.GISASSimulation()
simulation.setDetectorParameters(100, -1*deg, 1*deg, 100, 0, 2*deg)
simulation.setBeamParameters(1*angstrom, 0.2*deg, 0)
simulation.beam().setIntensity(1e+08)
simulation.setSample(get_sample(params))
if add_masks:
add_mask_to_simulation(simulation)
return simulation
def create_real_data():
"""
Generating "real" data by adding noise to the simulated data.
"""
params = {'radius': 5*nm, 'height': 10*nm}
# retrieving simulated data in the form of numpy array
simulation = get_simulation(params, add_masks=False)
simulation.runSimulation()
real_data = simulation.result().array()
# spoiling simulated data with the noise to produce "real" data
noise_factor = 0.1
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def add_mask_to_simulation(simulation):
"""
Here we demonstrate how to add masks to the simulation.
Only unmasked areas will be simulated and then used during the fit.
Masks can have different geometrical shapes (ba.Rectangle, ba.Ellipse, Line)
with the mask value either "True" (detector bin is excluded from the simulation)
or False (will be simulated).
Every subsequent mask overrides previously defined mask in this area.
In the code below we put masks in such way that simulated image will look like
a Pac-Man from ancient arcade game.
"""
# mask all detector (put mask=True to all detector channels)
simulation.maskAll()
# set mask to simulate pacman's head
simulation.addMask(ba.Ellipse(0, 1*deg, 0.5*deg, 0.5*deg), False)
# set mask for pacman's eye
simulation.addMask(ba.Ellipse(0.11*deg, 1.25*deg, 0.05*deg, 0.05*deg),
True)
# set mask for pacman's mouth
points = [[0*deg, 1*deg], [0.5*deg, 1.2*deg], [0.5*deg, 0.8*deg],
[0*deg, 1*deg]]
simulation.addMask(ba.Polygon(points), True)
# giving pacman something to eat
simulation.addMask(
ba.Rectangle(0.45*deg, 0.95*deg, 0.55*deg, 1.05*deg), False)
simulation.addMask(
ba.Rectangle(0.61*deg, 0.95*deg, 0.71*deg, 1.05*deg), False)
simulation.addMask(
ba.Rectangle(0.75*deg, 0.95*deg, 0.85*deg, 1.05*deg), False)
def run_fitting():
"""
main function to run fitting
"""
real_data = create_real_data()
fit_objective = ba.FitObjective()
fit_objective.addSimulationAndData(get_simulation, real_data, 1)
fit_objective.initPrint(10)
fit_objective.initPlot(10)
params = ba.Parameters()
params.add("radius", 6.*nm, min=4, max=8)
params.add("height", 9.*nm, min=8, max=12)
minimizer = ba.Minimizer()
result = minimizer.minimize(fit_objective.evaluate, params)
fit_objective.finalize(result)
if __name__ == '__main__':
run_fitting()
plt.show()
|