1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
#!/usr/bin/env python3
"""
Using custom objective function to fit GISAS data.
In this example objective function returns vector of residuals computed from
the data and simulation after applying sqrt() to intensity values.
"""
import numpy as np
from matplotlib import pyplot as plt
import bornagain as ba
from bornagain import deg, angstrom, nm
class MyObjective(ba.FitObjective):
"""
FitObjective extension for custom fitting metric.
"""
def __init__(self):
super(MyObjective, self).__init__()
def evaluate_residuals(self, params):
"""
Provides custom calculation of vector of residuals
"""
# calling parent's evaluate functions to run simulations
super(MyObjective, self).evaluate(params)
# accessing simulated and experimental data as flat numpy arrays
# applying sqrt to every element
sim = np.sqrt(np.asarray(self.simulation_array()))
exp = np.sqrt(np.asarray(self.experimental_array()))
# return vector of residuals
return sim - exp
def get_sample(params):
"""
Returns a sample with cylinders and pyramids on a substrate,
forming a hexagonal lattice.
"""
radius = params['radius']
lattice_length = params['length']
m_vacuum = ba.HomogeneousMaterial("Vacuum", 0, 0)
m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8)
sphere_ff = ba.FormFactorFullSphere(radius)
sphere = ba.Particle(m_particle, sphere_ff)
particle_layout = ba.ParticleLayout()
particle_layout.addParticle(sphere)
interference = ba.InterferenceFunction2DLattice(
ba.HexagonalLattice2D(lattice_length))
pdf = ba.FTDecayFunction2DCauchy(10*nm, 10*nm, 0)
interference.setDecayFunction(pdf)
particle_layout.setInterferenceFunction(interference)
vacuum_layer = ba.Layer(m_vacuum)
vacuum_layer.addLayout(particle_layout)
substrate_layer = ba.Layer(m_substrate, 0)
multi_layer = ba.MultiLayer()
multi_layer.addLayer(vacuum_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer
def get_simulation(params):
"""
Create and return GISAXS simulation with beam and detector defined.
"""
simulation = ba.GISASSimulation()
simulation.setDetectorParameters(100, -1*deg, 1*deg, 100, 0, 2*deg)
simulation.setBeamParameters(1*angstrom, 0.2*deg, 0)
simulation.beam().setIntensity(1e+08)
simulation.setSample(get_sample(params))
return simulation
def create_real_data():
"""
Generating "real" data by adding noise to the simulated data.
"""
params = {'radius': 6*nm, 'length': 12*nm}
simulation = get_simulation(params)
simulation.runSimulation()
# retrieving simulated data in the form of numpy array
real_data = simulation.result().array()
# spoiling simulated data with noise to produce "real" data
np.random.seed(0)
noise_factor = 0.1
noisy = np.random.normal(real_data, noise_factor*np.sqrt(real_data))
noisy[noisy < 0.1] = 0.1
return noisy
def run_fitting():
"""
Runs fitting.
"""
real_data = create_real_data()
objective = MyObjective()
objective.addSimulationAndData(get_simulation, real_data, 1)
objective.initPrint(10)
params = ba.Parameters()
params.add('radius', value=7*nm, min=5*nm, max=8*nm)
params.add('length', value=10*nm, min=8*nm, max=14*nm)
minimizer = ba.Minimizer()
result = minimizer.minimize(objective.evaluate_residuals, params)
objective.finalize(result)
if __name__ == '__main__':
run_fitting()
plt.show()
|