1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
|
#!/usr/bin/env python3
"""
Square lattice of cylinders inside finite layer with usage of average material
"""
import bornagain as ba
from bornagain import deg, nm, kvector_t
def get_sample(cyl_height=5*nm):
"""
Returns a sample with cylinders on a substrate.
"""
# defining materials
m_vacuum = ba.HomogeneousMaterial("Vacuum", 0, 0)
m_layer = ba.HomogeneousMaterial("Layer", 3e-6, 2e-8)
m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
m_particle = ba.HomogeneousMaterial("Particle", 3e-5, 2e-8)
# cylindrical particle
cylinder_ff = ba.FormFactorCylinder(5*nm, cyl_height)
cylinder = ba.Particle(m_particle, cylinder_ff)
position = ba.kvector_t(0, 0, -cyl_height)
particle_layout = ba.ParticleLayout()
particle_layout.addParticle(cylinder, 1, position)
# interference function
interference = ba.InterferenceFunction2DLattice(
ba.SquareLattice2D(15*nm, 0))
pdf = ba.FTDecayFunction2DCauchy(300*nm, 300*nm, 0)
interference.setDecayFunction(pdf)
particle_layout.setInterferenceFunction(interference)
vacuum_layer = ba.Layer(m_vacuum)
intermediate_layer = ba.Layer(m_layer, 5*nm)
intermediate_layer.addLayout(particle_layout)
substrate_layer = ba.Layer(m_substrate)
multi_layer = ba.MultiLayer()
multi_layer.addLayer(vacuum_layer)
multi_layer.addLayer(intermediate_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer
def get_simulation(sample):
beam = ba.Beam(1, 0.1*nm, ba.Direction(0.2*deg, 0))
detector = ba.SphericalDetector(100, -2*deg, 2*deg, 100, 0, 2*deg)
simulation = ba.GISASSimulation(beam, sample, detector)
simulation.getOptions().setUseAvgMaterials(True)
return simulation
if __name__ == '__main__':
import ba_plot
sample = get_sample()
simulation = get_simulation(sample)
ba_plot.run_and_plot(simulation)
|