1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
#!/usr/bin/env python3
"""
Simulation of grating using very long boxes and 1D lattice.
Monte-carlo integration is used to get rid of
large-particle form factor oscillations.
"""
import bornagain as ba
from bornagain import deg, angstrom, nm, micrometer
import ba_plot
from matplotlib import pyplot as plt
def get_sample(lattice_rotation_angle=0*deg):
"""
Returns a sample with a grating on a substrate.
lattice_rotation_angle = 0 - beam parallel to grating lines
lattice_rotation_angle = 90*deg - beam perpendicular to grating lines
"""
# defining materials
m_vacuum = ba.HomogeneousMaterial("Vacuum", 0, 0)
m_si = ba.HomogeneousMaterial("Si", 5.7816e-6, 1.0229e-7)
box_length, box_width, box_height = 50*micrometer, 70*nm, 50*nm
lattice_length = 150*nm
# collection of particles
interference = ba.InterferenceFunction1DLattice(
lattice_length, 90*deg - lattice_rotation_angle)
pdf = ba.FTDecayFunction1DGauss(450)
interference.setDecayFunction(pdf)
box_ff = ba.FormFactorLongBoxLorentz(box_length, box_width, box_height)
box = ba.Particle(m_si, box_ff)
particle_layout = ba.ParticleLayout()
particle_layout.addParticle(box, 1, ba.kvector_t(0, 0, 0),
ba.RotationZ(lattice_rotation_angle))
particle_layout.setInterferenceFunction(interference)
# assembling the sample
vacuum_layer = ba.Layer(m_vacuum)
vacuum_layer.addLayout(particle_layout)
substrate_layer = ba.Layer(m_si)
roughness = ba.LayerRoughness()
roughness.setSigma(5*nm)
roughness.setHurstParameter(0.5)
roughness.setLatteralCorrLength(10*nm)
multi_layer = ba.MultiLayer()
multi_layer.addLayer(vacuum_layer)
multi_layer.addLayerWithTopRoughness(substrate_layer, roughness)
return multi_layer
def get_simulation(sample):
"""
Create and return GISAXS simulation with beam and detector defined
"""
beam = ba.Beam(1e8, 1.34*angstrom, ba.Direction(0.4*deg, 0))
det = ba.SphericalDetector(200, -0.5*deg, 0.5*deg, 200, 0, 0.6*deg)
simulation = ba.GISASSimulation(beam, sample, det)
simulation.getOptions().setMonteCarloIntegration(True, 100)
return simulation
def run_simulation():
"""
Runs simulation and returns intensity map.
"""
sample = get_sample()
simulation = get_simulation(sample)
if not "__no_terminal__" in globals():
simulation.setTerminalProgressMonitor()
simulation.runSimulation()
return simulation.result()
def simulate_and_plot():
interactive = True
result = run_simulation().histogram2d()
ba_plot.plot_histogram(result)
peaks = ba.FindPeaks(result, 2, "nomarkov", 0.001)
xpeaks = [peak[0] for peak in peaks]
ypeaks = [peak[1] for peak in peaks]
print(peaks)
plt.plot(xpeaks,
ypeaks,
linestyle='None',
marker='x',
color='white',
markersize=10)
plt.show()
if __name__ == '__main__':
simulate_and_plot()
|