1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
|
#!/usr/bin/env python3
"""
2D lattice with disorder, centered square lattice
"""
import bornagain as ba
from bornagain import deg, nm, kvector_t
r = 3*nm # particle radius
a = 25*nm # lattice constant
def get_sample():
"""
Returns a sample with cylinders on a substrate,
forming a 2D centered square lattice
"""
# Define materials
material_Particle = ba.HomogeneousMaterial("Particle", 0.0006, 2e-08)
material_Substrate = ba.HomogeneousMaterial("Substrate", 6e-06, 2e-08)
material_Vacuum = ba.HomogeneousMaterial("Vacuum", 0, 0)
# Define particles
ff = ba.FormFactorCylinder(r, r)
particle_1 = ba.Particle(material_Particle, ff)
particle_2 = ba.Particle(material_Particle, ff)
particle_2.setPosition(kvector_t(a/2, a/2, 0))
# Define composition of particles at specific positions
basis = ba.ParticleComposition()
basis.addParticle(particle_1)
basis.addParticle(particle_2)
# Define 2D lattices
lattice = ba.SquareLattice2D(a, 0*deg)
# Define interference functions
iff = ba.InterferenceFunction2DLattice(lattice)
iff_pdf = ba.FTDecayFunction2DCauchy(48*nm, 16*nm, 0)
iff.setDecayFunction(iff_pdf)
# Define particle layouts
layout = ba.ParticleLayout()
layout.addParticle(basis)
layout.setInterferenceFunction(iff)
layout.setTotalParticleSurfaceDensity(0.0016)
# Define layers
layer_1 = ba.Layer(material_Vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_Substrate)
# Define sample
sample = ba.MultiLayer()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1, 0.1*nm, ba.Direction(0.2*deg, 0))
detector = ba.SphericalDetector(200, -2*deg, 2*deg, 200, 0, 2*deg)
simulation = ba.GISASSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
import ba_plot
sample = get_sample()
simulation = get_simulation(sample)
ba_plot.run_and_plot(simulation)
|