1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
#!/usr/bin/env python3
"""
Core shell nanoparticles
"""
import bornagain as ba
from bornagain import deg, nm
def get_sample():
"""
Returns a sample with box-shaped core-shell particles on a substrate.
"""
# Define materials
material_Core = ba.HomogeneousMaterial("Core", 6e-05, 2e-08)
material_Shell = ba.HomogeneousMaterial("Shell", 0.0001, 2e-08)
material_Vacuum = ba.HomogeneousMaterial("Vacuum", 0, 0)
# Define form factors
ff_1 = ba.FormFactorBox(12*nm, 12*nm, 7*nm)
ff_2 = ba.FormFactorBox(16*nm, 16*nm, 8*nm)
# Define particles
particle_1 = ba.Particle(material_Core, ff_1)
particle_2 = ba.Particle(material_Shell, ff_2)
# Define core shell particles
particle_3 = ba.ParticleCoreShell(particle_2, particle_1)
# Define interference functions
iff = ba.InterferenceFunctionNone()
# Define particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle_3)
layout.setInterferenceFunction(iff)
layout.setTotalParticleSurfaceDensity(0.01)
# Define layers
layer = ba.Layer(material_Vacuum)
layer.addLayout(layout)
# Define sample
sample = ba.MultiLayer()
sample.addLayer(layer)
return sample
def get_simulation(sample):
beam = ba.Beam(1, 0.1*nm, ba.Direction(0.2*deg, 0))
detector = ba.SphericalDetector(200, 2*deg, 0, 1*deg)
simulation = ba.GISASSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
import ba_plot
sample = get_sample()
simulation = get_simulation(sample)
ba_plot.run_and_plot(simulation)
|