1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
|
#!/usr/bin/env python3
"""
An example of defining reflectometry instrument
for time of flight experiment. In this example
we will use purely qz-defined beam,
without explicitly specifying
incident angle or a wavelength.
Note that these approaches work with SLD-based
materials only.
"""
import numpy as np
import bornagain as ba
from bornagain import angstrom
def get_sample():
"""
Defines sample and returns it. Note that SLD-based materials are used.
"""
# creating materials
m_ambient = ba.MaterialBySLD("Ambient", 0, 0)
m_ti = ba.MaterialBySLD("Ti", -1.9493e-06, 0)
m_ni = ba.MaterialBySLD("Ni", 9.4245e-06, 0)
m_substrate = ba.MaterialBySLD("SiSubstrate", 2.0704e-06, 0)
# creating layers
ambient_layer = ba.Layer(m_ambient)
ti_layer = ba.Layer(m_ti, 30*angstrom)
ni_layer = ba.Layer(m_ni, 70*angstrom)
substrate_layer = ba.Layer(m_substrate)
# creating multilayer
multi_layer = ba.MultiLayer()
multi_layer.addLayer(ambient_layer)
for i in range(10):
multi_layer.addLayer(ti_layer)
multi_layer.addLayer(ni_layer)
multi_layer.addLayer(substrate_layer)
return multi_layer
def get_simulation(sample, scan_size=500):
"""
Defines and returns specular simulation
with a qz-defined beam
"""
qzs = np.linspace(0.01, 1, scan_size) # qz-values
scan = ba.QSpecScan(qzs)
simulation = ba.SpecularSimulation()
simulation.setScan(scan)
simulation.setSample(sample)
return simulation
if __name__ == '__main__':
import ba_plot
sample = get_sample()
simulation = get_simulation(sample)
ba_plot.run_and_plot(simulation)
|