1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
#!/usr/bin/env python3
"""
Core shell nanoparticles
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
A sample with box-shaped core-shell particles on top of air.
"""
# Materials
material_Core = ba.RefractiveMaterial("Core", 6e-6, 2e-8)
material_Shell = ba.RefractiveMaterial("Shell", 1e-5, 2e-8)
# Form factors
ff_1 = ba.Box(12*nm, 12*nm, 7*nm)
ff_2 = ba.Box(16*nm, 16*nm, 8*nm)
# Particles
core = ba.Particle(material_Core, ff_1, ba.AlignAt_Bottom)
shell = ba.Particle(material_Shell, ff_2, ba.AlignAt_Bottom)
particle = ba.CoreAndShell(core, shell, ba.AlignAt_Bottom)
# Sample with particles in vacuum over vacuum substrate
layer_1 = ba.Layer(ba.Vacuum())
layer_1.deposit2D(ba.Dilute2D(0.001, particle))
layer_2 = ba.Layer(ba.Vacuum())
sample = ba.Sample()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = 200
detector = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0., 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_datafield(result, unit_aspect=1)
bp.plt.show()
|