1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
#!/usr/bin/env python3
"""
Cylindrical mesocrystal on a substrate.
Calculation using exact computation and
an approximate algorithm of the Fourier sum with a cutoff.
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
def get_sample():
# Materials
material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Basis particle
inner_ff = ba.Sphere(3*nm)
inner_particle = ba.Particle(material_particle, inner_ff)
# 3D lattice
lattice = ba.Lattice3D(R3(8*nm, 0, 0), R3(0, 8*nm, 0),
R3(0, 0, 8*nm))
# Crystal
crystal = ba.Crystal(inner_particle, lattice)
# Mesocrystal: shaped crystal
outer_ff = ba.Cylinder(20*nm, 50*nm)
outer_particle = ba.Mesocrystal(crystal, outer_ff)
# Layers
layer_1 = ba.Layer(vacuum)
layer_1.depositParticle(0.0001, outer_particle)
layer_2 = ba.Layer(material_substrate)
# Sample
sample = ba.Sample()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = 200
detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
def simulate(title, use_fourier):
sample = get_sample()
simulation = get_simulation(sample)
if use_fourier:
simulation.options().setMesoReciprocalSum(True, 2.5)
result = simulation.simulate()
result.setTitle(title)
return result
if __name__ == '__main__':
results = [
simulate('exact sum', False),
simulate('Fourier sum', True),
]
bp.plot_to_row(results)
bp.plt.show()
|